logo资料库

2021-2022学年江西萍乡市五年级下册数学期末试卷及答案.doc

第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
资料共16页,剩余部分请下载后查看
2021-2022 学年江西萍乡市五年级下册数学期末试卷及答案 一、填一填。(每空 1 分,共 23 分) 1. 51 9 的分数单位是( ),它有( )个这样的分数单位,再加上( ) 个这样的分数单位就是最小的质数。 【答案】 ①. 【解析】 1 9 ②. 14 ③. 4 【分析】把单位“1” 平均分成若干份,表示其中一份的数,叫作分数单位;一个数,如果 只有 1 和它本身两个因数,那么这样的数叫做质数,最小的质数是 2,据此解答。 【详解】由分数单位的意义可知, 1 9 再添上 4 个这样的分数单位,它就成为最小的质数。 51 9 的分数单位是 ,它有 14 个这样的单位; 2 1  5 9  , 4 9 【点睛】一个分数的分母是几,其分数单位就是几分之一,分子是几,其就含有几个这样的 分数单位。 2. 一个九位数,最高位上是最小的合数,千万位上是最小的奇数,十位上是最小的质数, 其余数位上都是 0,这个数是( ),读作( )。 【答案】 ①. 410000020 ②. 四亿一千万零二十 【解析】 【分析】最小的合数是 4,最小的奇数是 1,最小的质数是 2,据此解答即可。 【详解】这个数写作:410000020;读作:四亿一千万零二十。 【点睛】本题考查奇数与偶数、质数与合数、大数的读写法,解答本题的关键是掌握奇数与 偶数、质数与合数的概念。 3. n 是大于 0 的自然数,当 n ( )6 时, n 6 是真分数,当 n ( )6 时, n 6 是 假分数;当 n 是 6 的( )时, n 6 可化为整数。 【答案】 ①. < ②. ≥ ③. 倍数 【解析】 【分析】真分数:分子小于分母;假分数:分子大于或等于分母,当分子是分母的倍数时,
分数可化成整数,据此解答即可。 【详解】当 n<6 时, 当 n≥6 时, n 6 是假分数; 当 n 是 6 的倍数时, n 6 是真分数; n 6 可化为整数。 【点睛】本题考查真分数、假分数,解答本题的关键是掌握真分数、假分数的概念。 4. (  3 4 18 )  ( ) 3 (  4 2  8  ) 20  ( )(填小数) 【答案】15;24;21;0.75 【解析】 【分析】分数的基本性质:分数的分子和分母同时乘或除以相同的数(0 除外),分数的大 小不变;分数化小数,用分子除以分母即可。 【详解】 = 3 4 3 6  = 18 4 6  24 3 8 24  32 4 8  = = = 3 5  4 5  = 15 20 = 3+21 4+28 3 4 3 4 3 4 即 =3÷4=0.75 3 4 = 15 20 = 18 24 = 3+21 4+28 =0.75。 【点睛】掌握分数的基本性质、分数与小数的互化是解题的关键。 的所有最简真分数的和是( )。 5. 分数单位是 1 12 【答案】2 【解析】 【分析】分子与分母互为质数的分数为最简分数,分子小于分母的分数为真分数,根据两者 的意义可知,分数单位为 的最简真分数有 1 12 、 5 12 、 7 12 、 11 12 ,进一步求和即可。 1 12 11 12 + + 7 12 【详解】 + 1 12 7 12 + 5 12 11 12 = 6 12 +
= 24 12 =2 【点睛】本题主要考查了最简分数及真分数的意义。 6. a =3×3×5,b =3×5×11,a 和b 的最大公因数是( ),最小公倍数是( )。 【答案】 ①. 15 ②. 495 【解析】 【分析】两个数的最大公因数,是这两个公有质因数的连乘积,最小公倍数等于两个数的公 有质因数与独有质因数的连乘积,据此解答即可。 【详解】a 和 b 的最大公因数是:3×5=15; a 和 b 的最小公倍数是:3×5×3×11=45×11=495。 【点睛】本题考查最大公因数、最小公倍数的求法。 7. 做一个长为 6dm,宽为 5dm,高为 4dm 的长方体无盖玻璃鱼缸,用角钢做它的框架,至少 需要角钢( )m,至少需要玻璃( ),最多可装水( )。 【答案】 ①. 6 ②. 118 平方分米##118dm2 ③. 120 升##120L 【解析】 【分析】需要角钢多少 m 是求长方体鱼缸的棱长总和;由于鱼缸是无盖的,因此需要玻璃多 少是求它 5 个面的面积和;可装水多少是求它的容积;长方体的棱长=(长+宽+高)×4, 再根据表面积和体积的计算方法,即可解答。 【详解】角钢的长度: 4 (  ) 6 5 4   15 4 60 (dm)   1m=10dm 60dm=6m 需要玻璃: 6 5 6 4 2 5 4 2        30 48 40   118 (dm2)  最多可装水:
6 5 4     30 4 120 (dm3) 120dm3=120L 【点睛】本题考查的是长方体的棱长总和、表面积和容积的实际应用,特别注意的是至少需 要多少玻璃,要清楚是求几个面的面积和。 8. 把一根长 4m 的铁丝平均锯成同样长的 7 段,每段的长度是( )m,每段的长度是 这根铁丝的( )。 【答案】 ①. 4 7 ②. 1 7 【解析】 【分析】用全长除以锯的段数,求出每段的长度;把全长看作单位“1”,则每段是全长的 【详解】 4 7   (m) 4 7 1 7   1 7 1 7 。 【点睛】本题考查分数与除法的关系,解答本题的关键是掌握分数与除法的关系。 9. 5 路公交车每 6 分钟发一次车,7 路公交车每 8 分钟发一次车,6:45 两路公交车同时发 车,两路公交车第二次同时发车的时刻是( )。 【答案】7:09##7 时 09 分 【解析】 【分析】两路公交车第二次同时发车的时刻,与第一次发车时间的间隔应是 6 和 8 的最小公 倍数,据此解答即可。 【详解】 6 2 3   8 2 2 2    6 和 8 的最小公倍数是 24。 两路公交车第二次同时发车的时刻是:6 时 45 分+24 分=7 时 09 分。 【点睛】本题考查最小公倍数,解答本题的关键是掌握最小公倍数的概念。
10. 在 14 个零件中找 1 个次品(次品重一些)假如用天平称,至少称( )次能保证 找出次品。 【答案】3##三 【解析】 【分析】14 个零件分成 5、5、4 三份,第一次称确定次品所在的那一份;再把次品所在的 那一份分成三份,第二次称,确定次品所在的那一份;第三次称即可确定次品。 【详解】在 14 个零件中找 1 个次品(次品重一些)假如用天平称,至少称 3 次能保证找出 次品。 【点睛】本题考查找次品,解答本题的关键是掌握找次品的计算方法。 11. 下图是一个正方体的展示图,如果图中的“A”在正方体的左侧面,那么这个正方体的 右侧面是( )字。 【答案】D 【解析】 【分析】观察正方体的展开图,发现 A 的相对面是 D,据此解答即可。 【详解】如果图中的“A”在正方体的左侧面,那么这个正方体的右侧面是 D 字。 【点睛】本题考查正方体的展开图,解答本题的关键是掌握正方体的展开图特征。 二、判断。(对的打“√”,错的打“×”,共 5 分) 12. 最简分数的分子和分母中至少有一个是质数。( ) 【答案】× 【解析】 【分析】根据最简分数的的定义进行分析,举例说明即可。 【详解】 8 9 是最简分数,8 和 9 都是合数,所以原题说法错误。 【点睛】本题考查了最简分数,分子和分母互质的分数是最简分数。 13. 3 8 的分子加上 12,要使分数的大小不变,分母可以乘 5。( ) 【答案】√
【解析】 【分析】先确定分数的分子加上 12 后是 15,相当于分子扩大到原来的 5 倍,根据分数的基 本性质,分母也要扩大到原来的 5 倍,据此解答。 【详解】3 12 15 3 8   ,所以 15 3 5   的分子加上 12,要使分数的大小不变,分母可以乘 5。 故答案为:√ 【点睛】分数的分子和分母同时乘或者除以一个相同的数(0 除外),分数的大小不变,掌 握分数的基本性质是解答本题的关键。 14. 一根电线用去 3 7 ,还剩 4 7 米.( ) 【答案】× 【解析】 【详解】略 15. 两个合数的和一定是合数.( ) 【答案】× 【解析】 【详解】略 16. 一个正方体的棱长扩大为原来的 3 倍,体积扩大为原来的 9 倍。( ) 【答案】× 【解析】 【分析】设原正方体的棱长为 a,则扩大 3 倍后的棱长为 3a,求出扩大前后的体积,用扩大 后的体积除以原来的体积,就是体积扩大的倍数。 【详解】解:设原正方体的棱长为 a,则扩大 3 倍后的棱长为 3a a×a×a=a3 3a×3a×3a=27a3 27a3÷a3=27 则体积扩大为原来的 27 倍。 故答案为:× 【点睛】此题主要考查正方体体积公式的灵活应用。 三、选择。(把正确答案的序号填在括号里)(10 分)
17. 把 5 克盐放进 45 克水中,盐的质量占盐水质量的( )。 A. 1 9 【答案】B 【解析】 B. 1 10 C. 1 8 【分析】先求出盐水的总质量,再用盐的质量除以盐水的质量即可。 【详解】5÷(45+5) =5÷50 = 1 10 故答案为:B 【点睛】本题属于基本的分数除法应用题,求一个数是另一个数的几分之几,用前一个数除 以后一个数。 18. a 、b 都是大于 0 的自然数,且 1a A. a B. b   ,那么 a 和b 的最小公倍数是( b )。 C. a b 【答案】C 【解析】 【分析】a-1=b ,说明 a 和 b 是相邻的自然数,相邻的两个自然数互质,则 a 和 b 的最小 公倍数是它们的乘积,据此解答即可。 【详解】a 和 b的最小公倍数是 a×b。 故答案为:C 【点睛】本题考查最小公倍数,解答本题的关键是掌握最小公倍数的求法。 19. 已知 a 是奇数,b 是偶数,下面结果是奇数的式子是( )。 A. 4a+3b 【答案】C 【解析】 B. 2a+b C. 3(a+b) 【分析】整数中,是 2 的倍数的数叫做偶数,不是 2 的倍数的数叫做奇数;偶数×偶数=偶 数,偶数×奇数=偶数,奇数×奇数=奇数,偶数+偶数=偶数,偶数+奇数=奇数,奇数 +奇数=偶数;据此解答。 【详解】已知 a 是奇数,b 是偶数; A.4a 是偶数,3b 是偶数,那么偶数+偶数=偶数,即 4a+3b 的结果是偶数;
B.2a 是偶数,b 是偶数,那么偶数+偶数=偶数,即 2a+b 的结果是偶数; C.奇数+偶数=奇数,奇数×奇数=奇数,即 3(a+b)的结果是奇数。 故答案为:C 【点睛】掌握奇数与偶数的运算性质是解题的关键。 20. 在 5□40 中的方框里填入一个数字,使它能同时被 2、3、5 整除,最多有( )种填 法。 A. 3 【答案】B 【解析】 B. 4 C. 5 【分析】同时被 2、3、5 整除的数的特征:个位是 0,且各位上的数相加的和是 3 的倍数, 据此解答。 【详解】因为 5 4 0 9    ,9 0 9   ,9 3 12   ,9 6 15   ,9 9 18   ,所以 W 里可 以填 0、3、6、9,最多有 4 种填法。 故答案为:B 【点睛】解答本题的关键是要熟练掌握 2、3、5 的倍数的特征。 21. 如果长方体的长、宽、高都扩大 3 倍,则它的体积扩大( )倍。 B. 9 C. 6 D. 27 A. 3 【答案】D 【解析】 【分析】如果长方体的长、宽、高都扩大 3 倍,则它的体积扩大倍数×倍数×倍数,据此分 析。 【详解】3×3×3=27,体积扩大 27 倍。 故答案为:D 【点睛】关键是熟悉长方体体积公式,长方体体积=长×宽×高。 四、计算。(26 分)   22. 口算。 1 8 1  5 8 7 15  1 3 5 7     1 2 1 6  5 0.5  8 3 1 5 10   1 12 5 9 5 6 4 9    
分享到:
收藏