2021-2022 年陕西省西安市周至县高一数学上学期期中试卷
及答案
一.选择题(每小题 4 分,共 48 分;每题只有一个正确选项)
1.下列表述正确的是(
A. ={0}
2.已知全集 U={0,1,2,3,4},M={0,1,2},N={2,3},则(∁ UM)∩N=(
C. ⊇{0}
D. ∈{0}
B. ⊆{0}
)
A.{2,3,4}
3.已知集合 A={
}3,2{
A.
B.{2}
1|
x
Nx
}3,4{
B.
C.{3}
}5
,集合 B=
D.{0,1,2,3,4}
2|
N
x
}3,5{
C.
x
D.
}6
}5,4{
,则
)
BA
( )
4.已知全集 U=R,集合 A={1,2,3,4,5},B={x|x≥2},则图中阴影部分所表示的集合为(
)
A.{0,1,2}
C.{1,2}
5. 下列函数既是奇函数又是增函数的是(
B.{0,1}
y
x
2 1
A.
6.如果 f(x)=
y
x
1
B.
1x
,则 f(7)=
(
C.
)
D.{1}
)。
1
2
y
x
y
3
x
D.
A.2
7.函数
)(
xf
B.4
1
x
2
x
的定义域为
C.
22
A.[1,2)∪(2,+∞)
C.[1,2)
B.(1,+∞)
D.[1,+∞)
D.10
(
)
8. 下列各式中错误..的是 (
0.7
A. 0.8
3
3
C.
1.6
3
3
9. 若在
,1
1.4
(
)[来
B.
)
0.75
0.5
2
1)
x
D.
0.1
0.4
0.1
0.75
0.6
0.5
a
1
y
与
x
上,函 数
y
(
a
均单调 递减,则 a的取值 范围是
a
1
B.
ba,
(0
二、填空题(每小题 4 分,共 24 分)
13. 如果集合 A={x|ax2+2x+1=0}只有 2 个子集,则实数 a 的值为_____
2 ), 则 f (4)= ________ 。
14. 若幂函数 f(x)的图像过点 ( 2 ,
15.设
a2lg
16.已知
( )
f x
2
b3lg
,
,则
1)
5(
x
x
1(
2
1)
x
x
2
1,
x
17.函数
2
x
[ 3,2]
的值域是
6lg
。(用 ba 、 来表示)
,则 [
f
f
(1)]
y
1
2
x
1
2
18.若
( ) ( ) ,则实数 a 的取值范围是
3 2
1
2
a
a
。
。
。
三、解答题(本大题共 5 小题,共 48 分,解答应写出文字说明,证明过程或演算步骤)
19(本小题 8 分)计算下列各式的值
1
4
8
27
(1)
1)
2
1
3
(
)
(
0
(2)
log
3
27 lg
2
5
lg 4
20.(本小题 10 分 )若集合
求实数 a 的取值范围.
A
2
|
x x
ax
1 0,
,集合
x R
B
1,2
,且 A
B ,
( )
f x
3
x
,
2
x
3,
,
[ 1,2]
x
(2,5].
x
f x 的草图;(不
21.(本小题 10 分 )已知函数
(1)在右图给定的直角坐标系内画出 ( )
用列表描点)
(2)根据图像写出 ( )
(3)根据图像求 ( )
f x 的单调递增区间.
f x 的最小值.
y
3
2
1
0
-1
-1
1
2
3
4
5
x
22.(本小题 10 分 )某商品进货单价为 40 元,若销售价为 50 元,可卖出 50 个,如果销售
价每涨 1 元,销售量就减少 1 个,为了获得最大利润,求此商品的最佳售价应为多少?
23.(本小题 10 分 )已知函数
(1)求 a 的值;(2)求函数
.
y
( )
f x
( )
f x
一.选择题(每小题 5 分,共 55 分)
题号 1
2
3
4
5
选项 B
二、填空题(每小题 5 分,共 30 分)
C
B
D
D
2
x
a
(
的图像经过点(1,8).
0)
5
(
x
0)
的值域.
x
答案
6
C
7
A
8
B
9
D
10
11
12
B
B
A
13. 0 或 1
14.
2
15.
a+b
16.8
17.
[-2,7]
18.(
1
2
, )
三、解答题(本大题共 5 小题,共 48 分,解答应写出文字说明,证明过程或演算步骤)
19.(8 分)略
20.(10 分)若集合
A
2
|
x x
ax
1 0,
,集合
x R
B
1,2
,且 A
B ,求实数 a 的
取值范围.
解(1)若 A ,则
(2)若1 A ,解得
……….3 分;
a ,此时 1A ,适合题意……….3 分;
,解得 2
2a
2 4 0
a
2
5
2
a ,此时
(3)若 2 A ,解得
A
12,
2
,不合题意……….3 分;
综上所述,实数 a 的取值范围为[ 2,2)
.
……………….1 分
21. (本题满分 10 分)
解:(1)函数 ( )
………………4 分
f x 的图像如右图所示;
y
3
A(-1,2)
A
C(5,2)
(2))函数 ( )
……………….3 分
f x 的单调递增区间为[-1,0]和[2 ,5]
(3)当 x=2 时,
22.解 设最佳售价为(50+x)元,最大利润为 y 元,
………………3 分
1
( )
f x
min
1
0
-1
-1
1
2
5
x
B(2,-1)
y=(50+x)(50-x)-(50-x)×40
=-x2+40x+500.
当 x=20 时,y 取得最大值,所以应定价为 70 元.
故此商品的最佳售价应为 70 元.
23.解(1)由 (1) 8
f
a ,
8
3
a
1
2
……………3
分
(2)
( )
f x
(
1
2
y
max
1(
2
5
)
32
2
x
)
5
(
x
, 令
0)
u
2
x
5(
x
,则
0)
u
5
………5 分
故函数
y
( )
f x
的值域为
0)
0,32 .
(
x
………2 分