logo资料库

2022-2023年江西南昌红谷滩区六年级上册期末数学试卷及答案(人教版).doc

第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
资料共17页,剩余部分请下载后查看
2022-2023 年江西南昌红谷滩区六年级上册期末数学试卷及 答案(人教版) 一、填空。(每空 1 分,共 22 分) 3 4 的倒数是( 1. 【答案】 ①. 【解析】 ),( )的倒数是 1。 4 3 ②. 1 【分析】根据倒数的意义,乘积为 1 的两个数互为倒数,解答即可。 【详解】 3 4 的倒数是 4 3 ,1 的倒数是 1。 【点睛】本题考查倒数的意义,根据倒数的意义解答问题。 2. 3 4 的 2 3 是( 【答案】 ①. 1 2 【解析】 ),( ②. 2 3 )m 的 4 5 是 8 15 m。 【分析】根据求一个数的几分之几用乘法计算,已知一个数的几分之几是多少,求这个数用 除法,据此解答。 【详解】 3 4 × 2 3 = 1 2 ÷ = 4 5 8 15 【点睛】此题考查的是求一个数的几分之几用乘法计算,已知一个数的几分之几是多少,求 2 3 这个数用除法。 3. a 是 b 的 2 3 ,a 与 b 的比是( ),b 比 a 多( )%。 【答案】 ①. 2∶3 ②. 50 【解析】 【分析】根据 a 是 b 的 2 3 差除以 a 即可。 ,则 b 为 3,a 为 2,根据比的意义求出 a 与 b 的比;用 a 与 b 的 【详解】a 与 b 的比为:2∶3; b 比 a 多(3-2)÷2
=1÷2 =50% 【点睛】此题考查的是比的意义以及百分数的应用,解答此题关键是掌握用部分差÷单位 “1”=多(少)的分率。 4. 如图中博物馆在学校的( )方向上( )m 处,学校在体育场的( ) 方向上( )m 处。 【答案】 ①. 南偏西 25° ②. 750 ③. 南偏西 35° ④. 1000 【解析】 【分析】看图,博物馆在学校的南偏西 25°方向上,距离是 1.5×500=750(m); 体育场在学校的北偏东 35°方向,那么学校在体育场的南偏西 35°方向上,距离是 2×500 =1000(m)。 【详解】图中,博物馆在学校的南偏西 25°方向上 750m 处,学校在体育场的南偏西 35°方 向上 1000m 处。 【点睛】本题考查了位置和方向,熟练运用方向、角度和距离描述位置关系是解题的关键。 )60 60×80%( 5. 填上“>”“<”或“=”。 5 7 5 9 ②. > 15 7 7 15 【答案】 ①. < × ( )1 ×2( × ( 3 4 ③. < ) 5 7 ) 5 9 ④. = 8 9 9 8 × ( 6 7 ( ) 8 9 ) 7 8 ÷ 6 7 ÷ 7 8 ⑤. < ⑥. < 【解析】 【分析】一个数(0 除外)乘小于 1 的数,结果比原来的数小;一个数(0 除外)乘大于 1 的数,结果比原来的数大;一个数(0 除外)除以大于 1 的数,结果比原来的数小;互为倒 数的两个数的乘积是 1;一个数(0 除外)除以小于 1 的数,结果比原来的数大。据此填空 即可。 【详解】因为 80%<1
所以 60×80%<60 因为 2>1 5 7 8 9 互为倒数关系 =1 ×2> >1 ÷ < 9 8 15 7 15 7 和 × <1 × 3 4 < 5 9 所以 因为 所以 因为 所以 因为 所以 因为 所以 5 7 9 8 8 9 7 15 7 15 3 4 5 9 6 7 7 8 <1,所以 × 6 7 < 7 8 7 8 ÷ 6 7 < 7 8 ;因为 6 7 <1,所以 7 8 ÷ 6 7 > 7 8 × 6 7 【点睛】本题考查分数乘除法,明确积与因数、商与被除数之间的关系是解题的关键。 6. 一个半径是 4cm 的半圆,它的周长是( )cm,面积是( )cm2。 【答案】 ①. 20.56 ②. 25.12 【解析】 【分析】根据半圆的周长公式:半圆的周长 C=πr+2r;面积公式:半圆的面积 S=πr2÷2, 由此代入数据即可解答。 【详解】3.14×4+2×4 =12.56+8 =20.56(cm) 3.14×42÷2 =50.24÷2 =25.12(cm2) 【点睛】此题考查了半圆的周长和面积的计算方法的应用。注意半圆的周长等于圆周长的一 半再加直径。 7. 根据发现的巨齿鲨的部分椎骨化石推测,巨齿鲨的最大身长约比大白鲨的长 14m,巨齿 鲨与大白鲨的最大身长比约为 10∶3,大白鲨的最大身长约为( )m。
【答案】6 【解析】 【分析】根据题意,巨齿鲨与大白鲨的最大身长比约为 10∶3,也就是说巨齿鲨比大白鲨的 最大身长多 7 份,结合巨齿鲨的最大身长约比大白鲨的长 14m,先求出 1 份,然后乘 3 就是 大白鲨的最大身长。 【详解】14÷(10-3)×3 =14÷7×3 =2×3 =6(m) 所以,大白鲨的最大身长约为 6m。 【点睛】本题考查了比,明确比的意义是解题的关键。 8. 某班某天到校 48 人,病假 1 人,事假 1 人,这天这班的出勤率是( )。 【答案】96% 【解析】 【分析】先用到校人数加上病假人数,再加上事假人数,求出这个班的总人数,再根据出勤 率=出勤的人数÷总人数×100%,代入数据计算即可。 【详解】48÷(48+1+1)×100% =48÷50×100% =0.96×100% =96% 这天这班的出勤率是 96%。 【点睛】本题考查百分率问题,掌握出勤率的计算方法是解题的关键。 9. 加工一批零件,甲单独做要用 20 天,乙单独做要用 30 天,两人合作,( )天可 以完成全部的 2 3 。 【答案】8 【解析】 【分析】将这批零件看作单位“1”,从而将甲、乙的工作效率分别表示出来,再利用加法 求出两人的效率和。将全部的 2 3 除以两人的效率和,求出工作时间即可。
1 20 + 1 30 ) 【详解】 2 3 ÷( ÷ 1 12 ×12 = = 2 3 2 3 =8(天) 所以,两人合作,8 天可以完成全部的 2 3 。 【点睛】本题考查了工程问题,工作效率=工作总量÷工作时间,工作时间=工作总量÷工 作效率。 10. 照这样排下去,第 6 个数是( )。 【答案】21 【解析】 【分析】观察可知,第 1 个图形是 1 个圆,第 2 个图形是(1+2)个圆,第 3 个图形是(1 +2+3)个圆。由此类推,第 6 个图形是(1+2+3+4+5+6)个圆。有几个圆,对应的数 字就是几。据此解题。 【详解】1 1+2=3 1+2+3=6 … 1+2+3+4+5+6=21 所以,第 6 个数是 21。 【点睛】本题考查了数与形,有一定观察总结能力是解题的关键。 二、判断。(5 分) 11. 新培育的玉米良种,发芽率达到 120%。( ) 【答案】× 【解析】 【分析】根据“发芽率=种子发芽的数量÷种子的总数×100%”,据此判断。 【详解】当所有的种子都发芽时,发芽率最高为 100%,发芽率不可能超过 100%。
所以,新培育的玉米良种,发芽率不可能达到 120%。 原题说法错误。 故答案为:× 【点睛】本题考查百分率问题,掌握发芽率的含义以及计算方法是解题的关键。 12. 6 名同学进行乒乓球比赛,每 2 人要比赛一场,一共要进行 12 场比赛。( ) 【答案】× 【解析】 【详解】略 13. 比的前项和后项都乘同一个整数,比值不变。( ) 【答案】× 【解析】 【分析】比的基本性质是指比的前项和后项同时乘或除以相同的数(0 除外),比值不变; 据此解答。 【详解】因为只有比的前项和后项同时乘同一个数(0 除外),比值才不变;所以比的前项 和后项同时乘同一个整数,比值不变的说法是错误的。 故答案为:× 【点睛】此题考查对比的基本性质内容的理解,要注意:因为比的后项不能为 0,所以必须 限制同时乘或除以的这个数是 0 除外的数。 14. 圆和圆环都是轴对称图形。( ) 【答案】√ 【解析】 【分析】依据轴对称图形的定义,即在平面内,如果一个图形沿一条直线折叠,直线两旁的 部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断。 【详解】因为圆或圆环沿一条直线(经过圆心的直线)折叠,直线两旁的部分能够完全重合, 且这样的直线有无数条,所以说圆和圆环是轴对称图形,原题说法正确。 故答案为:√ 【点睛】解答此题的主要依据是:轴对称图形的定义。 15. 小亮说:“暑假期间我参加了许多体育锻练,体重下降了 10%千克”。 ( )
【答案】× 【解析】 【详解】百分数表示一个数是另一个数百分之几的数,百分数只表示两个量的关系,不表示 具体的量,也就是百分数带单位没有意义。 百分数不能带单位,所以原题说法错误。 故答案为:× 三、选择。(每题 2 分,共 10 分) 16. 一件衣服先提价 10%,再降价 10%,这时衣服的价格和原价比( )。 A. 提高了 B. 不变 C. 降低了 D. 无法确 定 【答案】C 【解析】 【分析】把商品原价看作单位“1”,先提价 10%,是原价的(1+10%),用 1×(1+10%) 可算出提价后的价格是多少;把提价后的价格看作单位“1”,再降价 10%,即为提价后价 格的(1-10%),提价后的价格×降价对应的分率=现价,求出现价后和原价进行比较即可。 【详解】由分析可得: 假设原价为 1, 提价后的价格为: 1×(1+10%) =1×1.1 =1.1 现价为: 1.1×(1-10%) =1.1×0.9 =0.99 0.99<1,所以现价比原价低。 故答案为:C
【点睛】本题主要考查了百分数乘法的意义,认准单位“1”,解题的过程中要注意单位“1” 的转变。 17. 一个圆和一个正方形的周长相等,他们的面积比较( )。 A. 正方形的面积大 B. 圆的面积大 C. 一样大 【答案】B 【解析】 【分析】周长相等的正方形和圆,圆的面积比正方形的面积大,可以通过举例证明,设周长 是 C,则正方形的边长是 C÷4,圆的半径是 C÷2π;根据它们的面积公式,求出它们的面 积,再进行比较,即可解答。 【详解】设周长是 C,则正方形的边长是: C÷4= C 4 ,圆的半径是:C÷2π= 圆的面积为: π( C 2  )2= 2 C 4  ,正方形的面积为: C 4 × C 4 = 2 C ,因为 16 所以圆的面积大于正方形的面积。 故选: B C 2  2 > C 4  ,则 2 C , 16 【点睛】此题主要考查周长相等的正方形和圆,圆的面积比正方形的面积大。 18. 生产同样多的零件,小张用 4 小时,小李用了 6 小时,小李和小张的工效最简整数比是 ( )。 1 6 【答案】D 1 4 A. ∶ B. 3∶2 C. 1 6 ∶ 1 4 D. 2∶3 【解析】 【分析】根据“工作效率=工作总量÷工作时间”表示出两人的工作效率,再根据比的意义 表示出小李和小张的工作效率之比。 【详解】假设工作总量为 1 小李的工作效率∶小张的工作效率= 故答案 为:D 1 6 ∶ 1 4 =( 1 6 ×12)∶( 1 4 ×12)=2∶3 【点睛】掌握工作总量、工作效率、工作时间之间的关系是解答题目的关键。 19. 甲数比乙数多 10%,甲数与乙数的最简整数比是( )。 A. 110∶100 B. 100∶110 C. 11∶10 D. 9∶10 【答案】C
分享到:
收藏