logo资料库

2021-2022学年辽宁鞍山铁东区五年级上册数学期末试卷及答案.doc

第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
第5页 / 共19页
第6页 / 共19页
第7页 / 共19页
第8页 / 共19页
资料共19页,剩余部分请下载后查看
2021-2022 学年辽宁鞍山铁东区五年级上册数学期末试卷及 答案 一、基础知识(共 40 点) (一)填一填(共 20 点) 1. 用数对表示位置时,一般先表示第几______,再表示第几______。 【答案】 ①. 列 ②. 行 【解析】 【分析】用数对表示位置时,一般先表示列,从左到右,后表示行,一般要从前往后,据此 填空。 【详解】用数对表示位置时,一般先表示列,再表示行。 故答案为:列;行 【点睛】根据数对了解位置是本题的关键,重点找准行与列。 2. 五年级有学生 45 人,男生有(45-a)人,这里的 a 表示( )。 【答案】女生人数 【解析】 【详解】略 3. 在 0.75, 0.75   , 0.75  ,0.57 中,最大的数是( ),最小的数是( )。   ①. 0.75 ②. 0.57 【答案】 【解析】 【分析】在 0.75,0.75  , 0.75 在 0.75, 0.75  【详解】在 0.75, 0.75    ,0.75  中 0.75  , 0.75   ,0.57 中,0.57 十分位上的数字 5 最小,则最小的数是 0.57;  千分位上的数字 7 最大,则最大的数是 0.75  ,0.57 中,最大的数是( 0.75    。  ),最小的数是 ( 0.57 )。 【点睛】掌握多位小数比较大小的方法是解答题目的关键。 4. 计算下面平面图形的面积。(单位:cm)
) 2cm ; 2S ( ) 2cm ; 3S ( ) 2cm ; 4S ( ) 1S ( 2cm 。 我发现:这四个平面图形的( )相等,( )也相等。 【答案】 ①. 96 ②. 96 ③. 96 ④. 96 ⑤. 面积 ⑥. 高 【解析】 【分析】根据长方形面积=长×宽;平行四边形的面积=底×高;三角形面积=底× 高÷2; 梯形面积=(上底+下底)×高÷2,代入数据即可解答。 【详解】 1S 8×12=96(平方厘米) 2S  8×12=96(平方厘米) 3S  16×12÷2 =192÷2 =96(平方厘米) 4S  (4+12)×12÷2 =16×12÷2 =192÷2 =96(平方厘米) 我发现:这四个平面图形的面积相等,高也相等。 【点睛】此题考查的是平面图形的面积计算,平行线之间的平面图形的高相等是解题关键。 5. 用 a 表示商品的单价,x 表示数量,c 表示总价,那么 c  ( )。如果每袋方便 面 1.50 元,乐乐用 6 元钱可以买( )袋方便面。 【答案】 ①. ax ②. 4 【解析】 【分析】根据总价=单价×数量,代入字母即可;再根据总价÷单价=数量即可得到答案。
【详解】由分析得, 用 a 表示商品的单价,x 表示数量,c 表示总价,那么c  ax; 6÷1.5=4(袋) 【点睛】此题考查的是用字母表示数,掌握单价×数量=总价是解题关键。 6. 杜仲是一种药材,有强筋壮骨的功效。如果制作一种杜仲茶,每剂茶需要杜仲 4.5 克, 那么 50 克杜仲最多可以制成( )剂这样的杜仲茶。 【答案】11 【解析】 【分析】由题意可知,已知每剂茶需要杜仲 4.5 克,求 50 克杜仲最多可以制成多少剂注意 的杜仲茶,根据除法的意义,用除法解答即可,其结果要根据实际情况运用去尾法保留整数。 【详解】50÷4.5≈11(剂) 则最多可以制成 11 剂这样的杜仲茶。 【点睛】本题考查小数除法,明确其结果要根据实际情况运用去尾法保留整数是解题的关键。 7. 某路口红绿灯的时间设置为:红灯 30 秒,绿灯 40 秒,黄灯 4 秒。当车辆随意经过该路 口时,遇到( )灯的可能性最小。 【答案】黄 【解析】 【分析】在这几种灯中,绿灯时间最长,因此遇到的可能性就最大。 【详解】因为路口的红绿灯时间设置为:红灯 30 秒,绿灯 40 秒,黄灯 4 秒; 绿灯时间>红灯时间>黄灯时间; 所以遇到黄灯的可能性最小。 【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大; 反之也成立;若包含的情况相当,那么它们的可能性就相等。 8. 【答案】0.2; . 0.3
【解析】 【分析】小数点后的小数个数有限是有限小数。小数点后的小数个数无限是无限小数。无限 循环小数,小数部分无穷尽,并且从小数部分的某一位起,一个数字或几个数字,依次不断 地重复出现,分别举例即可(答案不唯一)。 【详解】有限小数如 0.2;无限循环小数如 . 0.3 。 【点睛】此题考查有限小数与无限小数的区别,以及无限循环小数的表达方法。 9. 我们数学学习中经常会用“转化”思想,比如学习平行四边形面积时,我们将它转化成 长方形来学习,平行四边形的底就是长方形的( ),平行四边形的高就是长方形的 ( ( ),然后推导出平行四边形的面积计算方法。请你举个利用转化思想来学习的例子: )。 【答案】 ①. 长 ②. 宽 ③. 举例见详解 【解析】 【分析】求平行四边形的面积时,采用“割补”的方法,将平行四边形转化为长方形,平行 四边形的底就是长方形的长,平行四边形的高就是长方形的宽;三角形的面积公式也可以利 用平行四边形的面积推导而来,将平行四边形的对角线连接一条,会分成两个与平行四边形 等底等高的三角形。 【详解】求平行四边形的面积时,将平行四边形转化为长方形,平行四边形的底就是长方形 的长,平行四边形的高就是长方形的宽。 三角形的面积公式推导过程:将平行四边形的对角线连接一条,会分成两个与平行四边形等 底等高的三角形。则三角形的面积就是等底等高的平行四边形的面积的一半,因为平行四边 形的面积=底×高,则三角形的面积=底×高÷2(答案不唯一)。 【点睛】掌握各图形的面积公式推导过程是解题的关键。 (二)选一选(共 20 点) 10. 两个( )的三角形一定能拼成一个平行四边形。 B. 面积相等 C. 等高 D. 完全一 A. 等底 样 【答案】D 【解析】 【分析】三角形的面积计算公式的推导:两个完全一样的三角形通过旋转,平移拼成一个平
行四边形,由平行四边形的面积得出三角形的面积;由这个过程我们可以得出,能拼成一个 平行四边形的两个三角形,一定完全相同。 【详解】一个平行四边形,沿对角线可以分成两个三角形,这两个三角形是完全一样的。 故选:D 【点睛】解答此题要搞清知识产生的基础,三角形的面积是由平行四边形的面积推出来的, 由此即可得到问题的结论。 11. 下列算式中,与 2.5 7.6 的结果不同的是( A. 25 0.76 2.5 7 2.5 0.6  B. 0.025 760    )。 C. 0.5 0.5 7.6   D. 【答案】C 【解析】 【分析】小数乘法法则,先按整数乘法的法则先求出积,再看因数中一共有几位小数,就从 积的右边起数出几位点上小数点。依据小数乘法的乘法法则将各选项变形即可。 【详解】原式 2.5×7.6=25×76÷100 A.25×0.76=25×76÷100,与原式结果相同。 B.0.025×760=25×76÷100,与原式结果相同。 C.0.5×0.5×7.6=0.25×7.6=25×76÷100,与原式结果不同。 D.2.5×7+2.5×0.6=2.5×(7+0.6)=25×76÷100,与原式结果相同。 故答案为:C。 【点睛】熟练掌握小数乘法的乘法法则是解题的关键。 12. 乐乐的座位记为 3,5 ,下面数对表示的位置与它不相邻的是( )。 B.  3,3 C.  3,6 D.  4,5 A.  2,5 【答案】B 【解析】 【分析】数对的位置相邻的时,行数相同是列数相邻,列数相同时行数要相邻,据此分析即 可。 【详解】乐乐的座位(3,5),位置(3,3)虽然与乐乐的座位同列,但行数没有相邻,位 置不相邻。 故答案为:B
【点睛】此题考查用数对表示位置。 13. 下列式子中,属于方程的是( )。 B. 3 x   4 13 C. 6 x   4 17.2 D. A. 4 6x  18.5 81.5 100   【答案】C 【解析】 【分析】根据方程的意义:含有未知数的等式叫做方程,据此解答。 6x  ,此式含有未知数但不是等式,所以不是方程; ,此式含有未知数但不是等式,所以不是方程;   【详解】A. 4 B.3 4 13 4 17.2 C.6 D.18.5 81.5 100     x x ,此式含有未知数又是等式,所以是方程; ,此式是等式但未含有未知数,所以不是方程。 故答案为:C 【点睛】此题考查的是方程的意义,掌握方程的意义:含有未知数的等式叫做方程是解题关 键。 14. 下面的式子正确的是( )。 A. 2 a 2 a C. 5 2  y  3 y 【答案】B 【解析】 【分析】(1) 2 a a 根据 2a 和 2a 的意义分析; 2 B. 6.8 2 6.8 0.5    D.  m n   7    m n   7 (2) 6.8 2 6.8 0.5    利用小数乘除法的计算方法求出两式的结果; (3)5 2  y  和 3 y m n   7    m n   7 根据含有字母的式子化简求值的方法计算;据 此逐项分析。 【详解】A. 2a 表示两个 a 相乘即 a a ;2a 表示两个 a 相加即 a a ,则 2a 与 2a 不一定相 等,错误; B.6.8 2 13.6   ,6.8 0.5 13.6   ,则 6.8 2 6.8 0.5    ,正确; C.5 y  2 y  ,5 2  3 y 3y  ,错误; y
D.字母和数字相乘时,乘号可以省略,数字写在字母的前面, m n     7 7  误。 故答案为:B m n  ,错  【点睛】掌握含有字母的式子化简的方法是解答题目的关键。 15. 乐乐计划 5 周跑步 22.5 千米,他平均每周跑多少千米?在计算 22.5 5 时,甲、乙、 丙三位同学有不同的方法,计算正确的有( )。 B. 甲丙 C. 乙丙 D. 甲乙丙 A. 甲乙 【答案】D 【解析】 【分析】甲、乙、丙三位同学有不同的方法, 甲:把千米变为米,用整数除法的计算方法计算出结果后再换成千米,此方法正确; 乙:根据商不变性质,被除数和除数同时乘或除以一个相同的数(0 除外),商不变,此方 法正确; 丙:根据商变化规律:除数不变,被除数乘几,商也就乘几,得出结果需除以相同的数,此 方法正确。 【详解】由分析得, 甲:把千米变为米,用整数除法的计算方法计算出结果后再换成千米,此方法正确; 乙:根据商不变性质,被除数和除数同时乘或除以一个相同的数(0 除外),商不变,此方 法正确; 丙:根据商变化规律:除数不变,被除数乘几,商也就乘几,得出结果需除以相同的数,此 方法正确。
故选:D 【点睛】此题考查的是小数除法的计算,掌握不同的计算方法是解题关键。 16. 下面式子中,一颗★挡住了一个数字,( )的得数一定算错了。 A. 8 C. 8  ★ 0.4 3 .4 ★ 0.75 6 .75  ★ ★  B. 8 D. 8  ★ 1.5 5  1.4 1  ★ ★ .8 ★★ 【答案】C 【解析】 【分析】一个不为 0 的数,乘上一个小于 1 的数,积比这个数小,乘一个大于 1 的数,积比 这个数大;一个不为 0 的数,除以小于 1 的数,商比这个数大,除以一个大于 1 的数,商比 这个数小,据此分析即可。 【详解】依据一个不为 0 的数除以一个小于 1 的数,商会比这个数大,选项 C 除以 0.75, 商应该大于被除数,故判断 C 选项错误。 故答案为:C。 【点睛】掌握小数除法中商与被除数之间的关系是解题的关键。 17. 图中每个小方格的面积是 2 1cm ,这片银杏叶的面积大约是( )。 A. 10 ~ 12cm 2 B. 15 ~ 18cm 2 C. 21 ~ 24cm 2 D. 无法确 定 【答案】B 【解析】 【分析】由题意可知,这片银杏叶共有 9 个整格,15 个半格,两个半格是一个整格,据此 解答即可。 【详解】由分析可知: 9+15÷2 =9+7.5 =16.5(平方厘米)
分享到:
收藏