logo资料库

Matrix Methods in Data Mining and Pattern Recognition.pdf

第1页 / 共234页
第2页 / 共234页
第3页 / 共234页
第4页 / 共234页
第5页 / 共234页
第6页 / 共234页
第7页 / 共234页
第8页 / 共234页
资料共234页,剩余部分请下载后查看
fa04_eldenfm1.qxp 2/28/2007 3:24 PM Page 1 Matrix Methods in Data Mining and Pattern Recognition
fa04_eldenfm1.qxp 2/28/2007 3:24 PM Page 2 Fundamentals of Algorithms Editor-in-Chief: Nicholas J. Higham, University of Manchester The SIAM series on Fundamentals of Algorithms is a collection of short user-oriented books on state- of-the-art numerical methods. Written by experts, the books provide readers with sufficient knowledge to choose an appropriate method for an application and to understand the method’s strengths and limitations. The books cover a range of topics drawn from numerical analysis and scientific computing. The intended audiences are researchers and practitioners using the methods and upper level undergraduates in mathematics, engineering, and computational science. Books in this series not only provide the mathematical background for a method or class of methods used in solving a specific problem but also explain how the method can be developed into an algorithm and translated into software. The books describe the range of applicability of a method and give guidance on troubleshooting solvers and interpreting results. The theory is presented at a level accessible to the practitioner. MATLAB® software is the preferred language for codes presented since it can be used across a wide variety of platforms and is an excellent environment for prototyping, testing, and problem solving. The series is intended to provide guides to numerical algorithms that are readily accessible, contain practical advice not easily found elsewhere, and include understandable codes that implement the algorithms. Editorial Board Peter Benner Technische Universität Chemnitz John R. Gilbert University of California, Santa Barbara Michael T. Heath University of Illinois, Urbana-Champaign C. T. Kelley North Carolina State University Cleve Moler The MathWorks James G. Nagy Emory University Series Volumes Dianne P. O’Leary University of Maryland Robert D. Russell Simon Fraser University Robert D. Skeel Purdue University Danny Sorensen Rice University Andrew J. Wathen Oxford University Henry Wolkowicz University of Waterloo Eldén, L., Matrix Methods in Data Mining and Pattern Recognition Hansen, P. C., Nagy, J. G., and O’Leary, D. P., Deblurring Images: Matrices, Spectra, and Filtering Davis, T. A., Direct Methods for Sparse Linear Systems Kelley, C. T., Solving Nonlinear Equations with Newton’s Method
fa04_eldenfm1.qxp 2/28/2007 3:24 PM Page 3 Lars Eldén Linköping University Linköping, Sweden Matrix Methods in Data Mining and Pattern Recognition Society for Industrial and Applied Mathematics Philadelphia
fa04_eldenfm1.qxp 2/28/2007 3:24 PM Page 4 Copyright © 2007 by the Society for Industrial and Applied Mathematics. 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Google is a trademark of Google, Inc. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7101, info@mathworks.com, www.mathworks.com Figures 6.2, 10.1, 10.7, 10.9, 10.11, 11.1, and 11.3 are from L. Eldén, Numerical linear algebra in data mining, Acta Numer., 15:327–384, 2006. Reprinted with the permission of Cambridge University Press. Figures 14.1, 14.3, and 14.4 were constructed by the author from images appearing in P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell., 19:711–720, 1997. Library of Congress Cataloging-in-Publication Data Eldén, Lars, 1944- Matrix methods in data mining and pattern recognition / Lars Eldén. p. cm. — (Fundamentals of algorithms ; 04) Includes bibliographical references and index. ISBN 978-0-898716-26-9 (pbk. : alk. paper) 1. Data mining. 2. Pattern recognition systems—Mathematical models. 3. Algebras, Linear. I. Title. QA76.9.D343E52 2007 05.74—dc20 2006041348 is a registered trademark.
book 2007/2/2 page v Contents Preface I 1 2 3 4 Linear Algebra Concepts and Matrix Decompositions Vectors and Matrices in Data Mining and Pattern Recognition Data Mining and Pattern Recognition . . . . . . . . . . . . . . . 1.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Purpose of the Book . . . . . . . . . . . . . . . . . . . . . . . . 1.3 1.4 Programming Environments . . . . . . . . . . . . . . . . . . . . Floating Point Computations . . . . . . . . . . . . . . . . . . . . 1.5 1.6 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . Vectors and Matrices 2.1 2.2 2.3 2.4 2.5 2.6 Matrix-Vector Multiplication . . . . . . . . . . . . . . . . . . . . Matrix-Matrix Multiplication . . . . . . . . . . . . . . . . . . . Inner Product and Vector Norms . . . . . . . . . . . . . . . . . Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear Independence: Bases . . . . . . . . . . . . . . . . . . . . The Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . Linear Systems and Least Squares 3.1 3.2 3.3 3.4 3.5 3.6 LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . Symmetric, Positive Definite Matrices . . . . . . . . . . . . . . . Perturbation Theory and Condition Number . . . . . . . . . . . Rounding Errors in Gaussian Elimination . . . . . . . . . . . . . Banded Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . The Least Squares Problem . . . . . . . . . . . . . . . . . . . . Orthogonality 4.1 4.2 4.3 4.4 Orthogonal Vectors and Matrices . . . . . . . . . . . . . . . . . Elementary Orthogonal Matrices . . . . . . . . . . . . . . . . . . Number of Floating Point Operations . . . . . . . . . . . . . . . Orthogonal Transformations in Floating Point Arithmetic . . . v ix 3 3 4 7 8 8 11 13 13 15 17 18 20 21 23 23 25 26 27 29 31 37 38 40 45 46
book 2007/2/23 page vi Contents QR Decomposition 5.1 5.2 5.3 5.4 5.5 5.6 Orthogonal Transformation to Triangular Form . . . . . . . . . Solving the Least Squares Problem . . . . . . . . . . . . . . . . Computing or Not Computing Q . . . . . . . . . . . . . . . . . Flop Count for QR Factorization . . . . . . . . . . . . . . . . . Error in the Solution of the Least Squares Problem . . . . . . . Updating the Solution of a Least Squares Problem . . . . . . . . Singular Value Decomposition 6.1 6.2 6.3 6.4 6.5 6.6 The Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . Matrix Approximation . . . . . . . . . . . . . . . . . . . . . . . Principal Component Analysis . . . . . . . . . . . . . . . . . . . Solving Least Squares Problems . . . . . . . . . . . . . . . . . . Condition Number and Perturbation Theory for the Least Squares Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rank-Deficient and Underdetermined Systems . . . . . . . . . . Computing the SVD . . . . . . . . . . . . . . . . . . . . . . . . Complete Orthogonal Decomposition . . . . . . . . . . . . . . . 6.7 6.8 6.9 Reduced-Rank Least Squares Models 7.1 7.2 Truncated SVD: Principal Component Regression . . . . . . . . A Krylov Subspace Method . . . . . . . . . . . . . . . . . . . . Tensor Decomposition 8.1 8.2 8.3 8.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Tensor Concepts . . . . . . . . . . . . . . . . . . . . . . . A Tensor SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . Approximating a Tensor by HOSVD . . . . . . . . . . . . . . . 47 47 51 52 53 53 54 57 57 61 63 66 66 69 70 72 72 75 77 80 91 91 92 94 96 Clustering and Nonnegative Matrix Factorization 9.1 9.2 101 The k-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . 102 Nonnegative Matrix Factorization . . . . . . . . . . . . . . . . . 106 vi 5 6 7 8 9 II Data Mining Applications 10 Classification of Handwritten Digits 113 Handwritten Digits and a Simple Algorithm . . . . . . . . . . . 113 Classification Using SVD Bases . . . . . . . . . . . . . . . . . . 115 Tangent Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.1 10.2 10.3 11.1 11.2 11.3 11.4 11 Text Mining 129 . . . . . . . . . . . . 130 Preprocessing the Documents and Queries The Vector Space Model . . . . . . . . . . . . . . . . . . . . . . 131 Latent Semantic Indexing . . . . . . . . . . . . . . . . . . . . . . 135 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
book 2007/2/23 page vii Contents vii 11.5 11.6 11.7 Nonnegative Matrix Factorization . . . . . . . . . . . . . . . . . 141 LGK Bidiagonalization . . . . . . . . . . . . . . . . . . . . . . . 142 Average Performance . . . . . . . . . . . . . . . . . . . . . . . . 145 12 Page Ranking for a Web Search Engine 147 Pagerank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Random Walk and Markov Chains . . . . . . . . . . . . . . . . . 150 The Power Method for Pagerank Computation . . . . . . . . . . 154 HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 12.1 12.2 12.3 12.4 13 Automatic Key Word and Key Sentence Extraction 161 13.1 Saliency Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 13.2 Key Sentence Extraction from a Rank-k Approximation . . . . . 165 14 Face Recognition Using Tensor SVD 169 Tensor Representation . . . . . . . . . . . . . . . . . . . . . . . 169 Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Face Recognition with HOSVD Compression . . . . . . . . . . . 175 14.1 14.2 14.3 III Computing the Matrix Decompositions 15 Computing Eigenvalues and Singular Values 179 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 180 The Power Method and Inverse Iteration . . . . . . . . . . . . . 185 Similarity Reduction to Tridiagonal Form . . . . . . . . . . . . . 187 The QR Algorithm for a Symmetric Tridiagonal Matrix . . . . . 189 Computing the SVD . . . . . . . . . . . . . . . . . . . . . . . . 196 The Nonsymmetric Eigenvalue Problem . . . . . . . . . . . . . . 197 Sparse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 The Arnoldi and Lanczos Methods . . . . . . . . . . . . . . . . 200 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 Bibliography Index 209 217
book 2007/2/23 page viii
分享到:
收藏