logo资料库

2009年广东省肇庆市中考数学试题及答案.doc

第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
资料共8页,全文预览结束
2009 年广东省肇庆市中考数学试题及答案 说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分. 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的 4 个选项中, 只有一项是符合题目要求的.) 1.2008 年肇庆市工业总产值突破千亿大关,提前两年完成“十一五”规划预期目标.用科 学记数法表示数 1 千亿,正确的是( A.1000×108 B.1000×109 D.1012 C.1011 ) 2.实数 2 , 0.3 , , 2 , π 中,无理数的个数是( ) A.2 3.下列图形中,不是轴对称图形的是( A.等边三角形 4.如图 1 是 1998 年参加国际教育评估的 15 个国家学生的数学平均成绩的统计图,则平均 成绩大于或等于 60 的国家个数是( A.4 B.平行四边形 D.等腰梯形 C.4 ) D.12 C.10 C.圆 D.5 ) 1 7 B.3 B.8 频数(国家个数) 8 6 4 2 O 40 50 60 70 80 图 1 成绩 主视图 左视图 俯视图 图 2 ) 5.某几何体的三视图如图 2,则该几何体是( A.球 B.圆柱 C.圆锥 D.长方体 x  的自变量 x 的取值范围是( 2 ) B. 2 x  C. x ≥ 2 D. x ≤ 2 的值为零,则 x 的值是( ) 6.函数 y A. 2 x  7.若分式 x x   3 3 A.3 8.如图 3,Rt 则∠B的度数是( A.35° ABC△ ACB B. 3 中, ) C. 3  °,DE 过点 C,且 DE 90 D.0 AB∥ ,若 ACD  °, 55 B.45° C.55° D.65° A CD 图 3 B E D A P O 图 4 C B 9.如图 4,⊙O是正方形 ABCD的外接圆,点 P 在⊙O上,则∠APB等于( A. 30° C. 55° B. 45° D. 60° )
10.若 1O⊙ 与 2O⊙ 相切,且 1 O O  , 1O⊙ 的半径 1 r  ,则 2O⊙ 的半径 2r 是( 2 5 2 ) A. 3 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.) C. 7 B. 5 11.在平面直角坐标系中,点 (2 P , 关于原点对称点 P 的坐标是 3) D. 3 或 7 . 12.某校九年级(2)班(1)组女生的体重(单位:kg)为:38,40,35,36,65,42, 42,则这组数据的中位数是 13.75°的圆心角所对的弧长是 2.5π ,则此弧所在圆的半径为 14.若正六边形的边长为 2,则此正六边形的边心距为 . . . 15.观察下列各式: 1 1 3   1 2 11   3     , 1 3 5   1 1 1   2 3 5     , 1 5 7   1 1   2 5  1 7    ,…,根据 观察计算: 1 1 1 3 3 5     1 5 7     1 1)(2 (2 n  = n  1) .(n为正整数) 三、解答题(本大题共 10 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分 6 分) 计算: |  2 |  1      1 2    sin 45  ° ( 2009) 0 17.(本小题满分 6 分) 2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一. 其 中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚.问金、银、铜牌各多少枚? 18.(本小题满分 6 分) 掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于 2 且小于 5. 19.(本小题满分 7 分) 如图 5,ABCD是菱形,对角线 AC与 BD相交于 O,  ACD  30 °, BD 6 .
(1)求证:△ABD是正三角形; (2)求 AC的长(结果可保留根号). 20.(本小题满分 7 分) A D O B 图 5 C 已知 2008  x , y 2009 ,求代数式 x  x y   x   2 xy 2 y  x    的值. 21.(本小题满分 7 分) 如图 6,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. (1)求证: ABF (2)求证: DE EF FB  DAE  . ≌△ △ ; A E F B G 图 6 22.(本小题满分 8 分) D C 如图 7,已知一次函数 1y k  )的图象相交于点 A(1,3). (1)求这两个函数的解析式及其图象的另一交点 B 的坐标; y   (m为常数)的图象与反比例函数 2 x m 0 y (2)观察图象,写出使函数值 1 y≥ 的自变量 x 的取值范围. 2  (k为常数, k x A(1,3) y 3 2 1 1 1 B 1 2 3 x 图 7 36 °,线段 AB 的垂直平分线交 AB于 D,交 AC 23.(本小题满分 8 分) 如图 8,在 ABC△ 中, AB AC   , A
于 E,连接 BE. (1)求证:∠CBE=36°; (2)求证: 2AE  AC EC  . 24.(本小题满分 10 分) A D B 图 8 E C 已知一元二次方程 2 x px q (1)求 q 关于 p 的关系式;     的一根为 2. 1 0 (2)求证:抛物线 y  2 x  px q  与 x 轴有两个交点; (3)设抛物线 y  2 x  px q  的顶点为 M,且与 x 轴相交于 A( 1x ,0)、B( 2x ,0)两 点,求使△AMB 面积最小时的抛物线的解析式. 25.(本小题满分 10 分) 如图 9, O⊙ 的直径 AB  , 交 BN 于 C.设 AD x BC y ,  2 . AM 和 BN 是它的两条切线, DE 切 O⊙ 于 E,交 AM于 D, (1)求证: AM BN∥ ; (2)求 y 关于 x 的关系式; (3)求四边形 ABCD 的面积 S,并证明: S ≥ . 2 A D M E O N C B 图 9
数学试题参考答案和评分标准 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.) 题号 答案 1 C 2 A 3 B 4 D 5 B 6 C 7 A 8 A 9 B 10 D 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.) 题号 答案 11 ( 2 3)  , 12 40 13 6 三、解答题(本大题共 10 小题,共 75 分.) 16.(本小题满分 6 分) 14 3 15 n n  2 1 解:原式  2 2   2 2 1  ········································································· (4 分) 1 ·····························································································(6 分) 17.(本小题满分 6 分) 解:设金、银牌分别为 x 枚、 y 枚,则铜牌为 ( y  枚,································(1 分) 7) 依题意,得 x y       x y  ( y ( y   7) 100 7) 2.   , ······························································· (3 分) 解以上方程组,得 51  x , y 21 ,····························································· (5 分) 所以 y   7 21 7   . 28 答:金、银、铜牌分别为 51 枚、21 枚、28 枚.············································· (6 分) 18.(本小题满分 6 分) 解:掷一个骰子,向上一面的点数可能为 1,2,3,4,5,6,共 6 种. 这些点数出现的可 能性相等. (1)点数为偶数有 3 种可能,即点数为 2,4,6, ∴P(点数为偶数)   ;···································································· (3 分) 3 6 1 2 (2)点数大于 2 且小于 5 有 2 种可能,即点数为 3,4, ∴P(点数大于 2 且小于 5) 2 6 1 3  .····························································(6 分) 19.(本小题满分 7 分) (1)证明:∵AC是菱形 ABCD的对角线, ∴AC平分∠BCD. 又∠ACD=30°,∴∠BCD=60°.··································· (1 分) ∵∠BAD与∠BCD是菱形的一组对角, ∴∠BAD=∠BCD=60°.··············································· (2 分) ∵AB、AD是菱形的两条边,∴ AB AD .····················································(3 分) ∴△ABD是正三角形.··············································································· (4 分) B 图 5 O A D C
(2)解:∵O为菱形对角线的交点, ∴ AC  2 OC OD ,  在 Rt COD△ 中, ∴ OC  OD tan 30  ° OD OC 3 3 3 1 2  BD  3 ,  COD  90 °.··········································(5 分) tan  OCD  tan 30 °,  3 3 ,·································································· (6 分) ∴ AC  2 OC  6 3 ,答 AC 的长为 6 3 .·················································· (7 分) 20.(本小题满分 7 分) 解: x  x y   x   2 xy 2 y  x       x x x  x  x 1  2 x  2 y   2 y xy x ······································· (2 分) y  x  ( x 2 y ) ···············································(4 分) ···························································· (5 分) y ∵ 2008  x , y 2009 ,∴原式  1  x y  1  2008 2009   1 .························ (7 分) E F A B D 21.(本小题满分 7 分) 证明:(1)∵DE⊥AG,BF⊥AG, ∴∠AED=∠AFB=90°.··········································· (1 分) ∵ABCD是正方形,DE⊥AG, ∴∠BAF+∠DAE=90°,∠ADE+∠DAE=90°, ∴∠BAF =∠ADE. ·············································· (2 分) 又在正方形 ABCD中,AB=AD.·································· (3 分) 在△ABF与△DAE 中,∠AFB =∠DEA=90°, ∠BAF =∠ADE ,AB=DA, ∴△ABF≌△DAE.················································· (5 分) (2)∵△ABF≌△DAE,∴AE=BF,DE=AF. ···················································(6 分) 又 AF=AE+EF,∴AF=EF+FB,∴DE=EF+FB.···················································· (7 分) 22.(本小题满分 8 分) 解:(1)由题意,得3 1 m   ,·································································· (1 分) x  .········································ (2 分) k ,·················································································· (3 分) 1 2m  ,所以一次函数的解析式为 1 y 由题意,得3 图 6 解得 G 解得 3 y k  ,所以反比例函数的解析式为 2  .··········· (4 分) 2 3 x C y 3 1 O 1 1 B A(1,3) 1 x 图 7
3 x y 由题意,得 2x x   ,解得 1  1  , x 2 3 .················ (5 分) 3 x   时, 1 y 当 2 2 (2)由图象可知,当 3  ≤ x 0 或 x ≥ 时, 1   ,所以交点 ( 3 1) B  , .······· (6 分) 1 y 函数值 1 y≥ .······················································ (8 分) 2 A   36   °,∴ EBA 36 A  , ABC  AB AC  EBA  CBE    °.··············································· (1 分) ABC     °.·········· (2 分) 36  °.······························ (3 分)    23.(本小题满分 8 分) 证明:(1)∵DE是 AB 的垂直平分线,∴ EA EB , ∴ ∵ ∴ (2)由(1)得,在△BCE中, ∴ 在△ABC 与△BEC中, CBE ∴ ABC  °,    °,∴ BC BE AE   , C 72  .·················· (4 分)    ,  .················································ (6 分) BEC ,即 2 BC AC EC CBE BEC ∽△ °, 72 72  36   C C C A C ∴ △ AC BC BC EC 故 2 AE  A D B 图 8 E C   .···························································· (7 分) AC EC  .················································································· (8 分) 24.(本小题满分 10 分) (1)解:由题意,得 22  2 p q    ,即 1 0 q   (2 p  .·························· (2 分) 5) (2)证明:∵一元二次方程 2 x  px q   的判别式 0   p 2 4  , q 由(1)得   2 p  4(2 p  5)  2 p  8 p  20 (  p  2 4)   ,···················· (3 分) 4 0 ∴一元二次方程 2 x  px q 0   有两个不相等的实根.···································· (4 分) ∴抛物线 y  2 x  px q  与 x 轴有两个交点.················································ (5 分) (3)解:抛物线顶点的坐标为 M q 4 ,    p 2 2 p  4    ,······································· (6 分) x ∵ 1 x, 是方程 2 x 2  px q x    的两个根,∴ 1 x x 1 2    0 p , x 2    . q ∴ | AB | |  x 1  x 2 |  ( x 1  2 x 2 )  4 x x 1 2  2 p  .······································(7 分) 4 q ∴ S △ AMB  1 2 | AB |  2 p 4 q  4  1 8 2 ( p  4 ) q 2 p  4 q ,··································· (8 分) 要使 AMB S△ 最小,只须使 2 4 q 最小.而由(2)得 2 p p  4 q  ( p  2 4)  , 4
所以当 p   时,有最小值 4,此时 AMB S△ 4  1 , 3q .··································(9 分) 故抛物线的解析式为 y  x 2 4  x  .·························································(10 分) 3 ⊥ , ⊥ ,∴ AM BN∥ .··············· (2 分) 25.(本小题满分 10 分) (1)证明:∵AB是直径,AM、BN是切线, ∴ AM AB BN 解:(2)过点 D作 DF 由(1) AM BN∥ ,∴四边形 ABFD 为矩形. ∴ ∵DE、DA,CE、CB都是切线, ∴根据切线长定理,得  , BF AD x AB BC⊥ 于 F,则 AB DF∥ . DF AB 2   .····························(3 分) A D M E O N C B F 图 9 x , DE DA x  ,CE CB y    .······························· (4 分) 在 Rt DFC△ 中, DF  2 , DC DE CE x     y CF BC BF y ,     ∴ ( x  2 y )  化简,得 y  2 2  1 ( x x ( y  ,·······································································(5 分) 2 x )  .············································································ (6 分) 0) (3)由(1)、(2)得,四边形的面积 S  1 2 AB AD BC  ( ) 2    1 2  x   1 x    , 即 S   x ∵ x    1   x  1 ( x x  .················································································ (8 分) 0)      x 2 2 1 x    x  2 1 x    ≥ ,当且仅当 1x  时,等号成立. 0 ∴ x  ≥ ,即 2 1 x S ≥ .········································································ (10 分) 2
分享到:
收藏