2009 年广东省肇庆市中考数学试题及答案
说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的 4 个选项中,
只有一项是符合题目要求的.)
1.2008 年肇庆市工业总产值突破千亿大关,提前两年完成“十一五”规划预期目标.用科
学记数法表示数 1 千亿,正确的是(
A.1000×108
B.1000×109
D.1012
C.1011
)
2.实数 2 , 0.3 ,
, 2 , π 中,无理数的个数是(
)
A.2
3.下列图形中,不是轴对称图形的是(
A.等边三角形
4.如图 1 是 1998 年参加国际教育评估的 15 个国家学生的数学平均成绩的统计图,则平均
成绩大于或等于 60 的国家个数是(
A.4
B.平行四边形
D.等腰梯形
C.4
)
D.12
C.10
C.圆
D.5
)
1
7
B.3
B.8
频数(国家个数)
8
6
4
2
O 40 50 60 70 80
图 1
成绩
主视图
左视图
俯视图
图 2
)
5.某几何体的三视图如图 2,则该几何体是(
A.球
B.圆柱
C.圆锥
D.长方体
x
的自变量 x 的取值范围是(
2
)
B. 2
x
C.
x ≥
2
D.
x ≤
2
的值为零,则 x 的值是(
)
6.函数
y
A. 2
x
7.若分式
x
x
3
3
A.3
8.如图 3,Rt
则∠B的度数是(
A.35°
ABC△
ACB
B. 3
中,
)
C. 3
°,DE 过点 C,且 DE
90
D.0
AB∥ ,若
ACD
°,
55
B.45°
C.55°
D.65°
A
CD
图 3
B
E
D
A
P
O
图 4
C
B
9.如图 4,⊙O是正方形 ABCD的外接圆,点 P 在⊙O上,则∠APB等于(
A. 30°
C. 55°
B. 45°
D. 60°
)
10.若 1O⊙ 与 2O⊙ 相切,且 1
O O , 1O⊙ 的半径 1
r ,则 2O⊙ 的半径 2r 是(
2
5
2
)
A. 3
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.)
C. 7
B. 5
11.在平面直角坐标系中,点 (2
P
, 关于原点对称点 P 的坐标是
3)
D. 3 或 7
.
12.某校九年级(2)班(1)组女生的体重(单位:kg)为:38,40,35,36,65,42,
42,则这组数据的中位数是
13.75°的圆心角所对的弧长是 2.5π ,则此弧所在圆的半径为
14.若正六边形的边长为 2,则此正六边形的边心距为
.
.
.
15.观察下列各式:
1
1 3
1
2
11
3
,
1
3 5
1 1 1
2 3 5
,
1
5 7
1 1
2 5
1
7
,…,根据
观察计算:
1
1
1 3 3 5
1
5 7
1
1)(2
(2
n
=
n
1)
.(n为正整数)
三、解答题(本大题共 10 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.)
16.(本小题满分 6 分)
计算:
|
2 |
1
1
2
sin 45
°
( 2009)
0
17.(本小题满分 6 分)
2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一. 其
中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚.问金、银、铜牌各多少枚?
18.(本小题满分 6 分)
掷一个骰子,观察向上一面的点数,求下列事件的概率:
(1)点数为偶数;
(2)点数大于 2 且小于 5.
19.(本小题满分 7 分)
如图 5,ABCD是菱形,对角线 AC与 BD相交于 O,
ACD
30
°,
BD
6
.
(1)求证:△ABD是正三角形;
(2)求 AC的长(结果可保留根号).
20.(本小题满分 7 分)
A
D
O
B
图 5
C
已知 2008
x
,
y
2009
,求代数式
x
x
y
x
2
xy
2
y
x
的值.
21.(本小题满分 7 分)
如图 6,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F.
(1)求证: ABF
(2)求证: DE EF FB
DAE
.
≌△
△
;
A
E
F
B
G
图 6
22.(本小题满分 8 分)
D
C
如图 7,已知一次函数 1y
k )的图象相交于点 A(1,3).
(1)求这两个函数的解析式及其图象的另一交点 B 的坐标;
y
(m为常数)的图象与反比例函数 2
x m
0
y
(2)观察图象,写出使函数值 1
y≥ 的自变量 x 的取值范围.
2
(k为常数,
k
x
A(1,3)
y
3
2
1
1
1
B
1 2 3
x
图 7
36
°,线段 AB 的垂直平分线交 AB于 D,交 AC
23.(本小题满分 8 分)
如图 8,在 ABC△
中,
AB AC
,
A
于 E,连接 BE.
(1)求证:∠CBE=36°;
(2)求证: 2AE
AC EC
.
24.(本小题满分 10 分)
A
D
B
图 8
E
C
已知一元二次方程 2
x
px q
(1)求 q 关于 p 的关系式;
的一根为 2.
1 0
(2)求证:抛物线
y
2
x
px q
与 x 轴有两个交点;
(3)设抛物线
y
2
x
px q
的顶点为 M,且与 x 轴相交于 A( 1x ,0)、B( 2x ,0)两
点,求使△AMB 面积最小时的抛物线的解析式.
25.(本小题满分 10 分)
如图 9, O⊙ 的直径
AB
,
交 BN 于 C.设 AD x BC y
,
2
.
AM
和 BN 是它的两条切线, DE 切 O⊙ 于 E,交 AM于 D,
(1)求证: AM BN∥ ;
(2)求 y 关于 x 的关系式;
(3)求四边形 ABCD 的面积 S,并证明:
S ≥ .
2
A D
M
E
O
N
C
B
图 9
数学试题参考答案和评分标准
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.)
题号
答案
1
C
2
A
3
B
4
D
5
B
6
C
7
A
8
A
9
B
10
D
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.)
题号
答案
11
( 2 3)
,
12
40
13
6
三、解答题(本大题共 10 小题,共 75 分.)
16.(本小题满分 6 分)
14
3
15
n
n
2
1
解:原式
2 2
2
2
1
········································································· (4 分)
1 ·····························································································(6 分)
17.(本小题满分 6 分)
解:设金、银牌分别为 x 枚、 y 枚,则铜牌为 (
y 枚,································(1 分)
7)
依题意,得
x
y
x
y
(
y
(
y
7) 100
7) 2.
,
······························································· (3 分)
解以上方程组,得 51
x
,
y
21
,····························································· (5 分)
所以
y
7
21 7
.
28
答:金、银、铜牌分别为 51 枚、21 枚、28 枚.············································· (6 分)
18.(本小题满分 6 分)
解:掷一个骰子,向上一面的点数可能为 1,2,3,4,5,6,共 6 种. 这些点数出现的可
能性相等.
(1)点数为偶数有 3 种可能,即点数为 2,4,6,
∴P(点数为偶数)
;···································································· (3 分)
3
6
1
2
(2)点数大于 2 且小于 5 有 2 种可能,即点数为 3,4,
∴P(点数大于 2 且小于 5)
2
6
1
3
.····························································(6 分)
19.(本小题满分 7 分)
(1)证明:∵AC是菱形 ABCD的对角线,
∴AC平分∠BCD.
又∠ACD=30°,∴∠BCD=60°.··································· (1 分)
∵∠BAD与∠BCD是菱形的一组对角,
∴∠BAD=∠BCD=60°.··············································· (2 分)
∵AB、AD是菱形的两条边,∴ AB AD
.····················································(3 分)
∴△ABD是正三角形.··············································································· (4 分)
B
图 5
O
A
D
C
(2)解:∵O为菱形对角线的交点,
∴
AC
2
OC OD
,
在 Rt COD△
中,
∴
OC
OD
tan 30
°
OD
OC
3
3
3
1
2
BD
3
,
COD
90
°.··········································(5 分)
tan
OCD
tan 30
°,
3 3
,·································································· (6 分)
∴
AC
2
OC
6 3
,答 AC 的长为 6 3 .·················································· (7 分)
20.(本小题满分 7 分)
解:
x
x
y
x
2
xy
2
y
x
x
x
x
x
x
1
2
x
2
y
2
y
xy
x
······································· (2 分)
y
x
(
x
2
y
)
···············································(4 分)
···························································· (5 分)
y
∵ 2008
x
,
y
2009
,∴原式
1
x
y
1
2008 2009
1
.························ (7 分)
E
F
A
B
D
21.(本小题满分 7 分)
证明:(1)∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°.··········································· (1 分)
∵ABCD是正方形,DE⊥AG,
∴∠BAF+∠DAE=90°,∠ADE+∠DAE=90°,
∴∠BAF =∠ADE. ·············································· (2 分)
又在正方形 ABCD中,AB=AD.·································· (3 分)
在△ABF与△DAE 中,∠AFB =∠DEA=90°,
∠BAF =∠ADE ,AB=DA,
∴△ABF≌△DAE.················································· (5 分)
(2)∵△ABF≌△DAE,∴AE=BF,DE=AF. ···················································(6 分)
又 AF=AE+EF,∴AF=EF+FB,∴DE=EF+FB.···················································· (7 分)
22.(本小题满分 8 分)
解:(1)由题意,得3 1 m
,·································································· (1 分)
x .········································ (2 分)
k ,·················································································· (3 分)
1
2m ,所以一次函数的解析式为 1
y
由题意,得3
图 6
解得
G
解得 3
y
k ,所以反比例函数的解析式为 2
.··········· (4 分)
2
3
x
C
y
3
1
O
1
1
B
A(1,3)
1
x
图 7
3
x
y
由题意,得
2x
x
,解得 1
1
,
x
2
3
.················ (5 分)
3
x 时, 1
y
当 2
2
(2)由图象可知,当 3
≤
x
0
或
x ≥ 时,
1
,所以交点 ( 3 1)
B , .······· (6 分)
1
y
函数值 1
y≥ .······················································ (8 分)
2
A
36
°,∴
EBA
36
A
,
ABC
AB AC
EBA
CBE
°.··············································· (1 分)
ABC
°.·········· (2 分)
36
°.······························ (3 分)
23.(本小题满分 8 分)
证明:(1)∵DE是 AB 的垂直平分线,∴ EA EB ,
∴
∵
∴
(2)由(1)得,在△BCE中,
∴
在△ABC 与△BEC中, CBE
∴ ABC
°,
°,∴ BC BE AE
, C
72
.·················· (4 分)
,
.················································ (6 分)
BEC
,即 2
BC
AC EC
CBE
BEC
∽△
°,
72
72
36
C
C
C
A
C
∴
△
AC BC
BC EC
故 2
AE
A
D
B
图 8
E
C
.···························································· (7 分)
AC EC
.················································································· (8 分)
24.(本小题满分 10 分)
(1)解:由题意,得 22
2
p q
,即
1 0
q
(2
p
.·························· (2 分)
5)
(2)证明:∵一元二次方程 2
x
px q
的判别式
0
p
2 4
,
q
由(1)得
2
p
4(2
p
5)
2
p
8
p
20 (
p
2
4)
,···················· (3 分)
4 0
∴一元二次方程 2
x
px q
0
有两个不相等的实根.···································· (4 分)
∴抛物线
y
2
x
px q
与 x 轴有两个交点.················································ (5 分)
(3)解:抛物线顶点的坐标为
M
q
4
,
p
2
2
p
4
,······································· (6 分)
x
∵ 1
x, 是方程 2
x
2
px q
x
的两个根,∴ 1
x x
1 2
0
p
,
x
2
.
q
∴
|
AB
|
|
x
1
x
2
|
(
x
1
2
x
2
)
4
x x
1 2
2
p
.······································(7 分)
4
q
∴
S
△
AMB
1
2
|
AB
|
2
p
4
q
4
1
8
2
(
p
4 )
q
2
p
4
q
,··································· (8 分)
要使 AMB
S△ 最小,只须使 2 4
q 最小.而由(2)得 2
p
p
4
q
(
p
2
4)
,
4
所以当
p 时,有最小值 4,此时 AMB
S△
4
1
,
3q
.··································(9 分)
故抛物线的解析式为
y
x
2 4
x
.·························································(10 分)
3
⊥ , ⊥ ,∴ AM BN∥ .··············· (2 分)
25.(本小题满分 10 分)
(1)证明:∵AB是直径,AM、BN是切线,
∴ AM AB BN
解:(2)过点 D作 DF
由(1) AM BN∥ ,∴四边形 ABFD 为矩形.
∴
∵DE、DA,CE、CB都是切线,
∴根据切线长定理,得
, BF AD x
AB
BC⊥ 于 F,则 AB DF∥ .
DF AB
2
.····························(3 分)
A D
M
E
O
N
C
B
F
图 9
x
,
DE DA x
,CE CB y
.······························· (4 分)
在 Rt DFC△
中,
DF
2
,
DC DE CE x
y CF BC BF y
,
∴
(
x
2
y
)
化简,得
y
2
2
1 (
x
x
(
y
,·······································································(5 分)
2
x
)
.············································································ (6 分)
0)
(3)由(1)、(2)得,四边形的面积
S
1
2
AB AD BC
(
)
2
1
2
x
1
x
,
即
S
x
∵
x
1
x
1 (
x
x
.················································································ (8 分)
0)
x
2
2
1
x
x
2
1
x
≥ ,当且仅当 1x 时,等号成立.
0
∴
x
≥ ,即
2
1
x
S ≥ .········································································ (10 分)
2