数字信号处理
习题解答 2005
第一章 习题
1.1 给定 f(t) = rect(t+2) + rect(t-2), 画出下列函数的图形。
(1) f(t)
(2) g(t) = f(t-1)
(3) h(t) = f(t)u(t)
(4) f(t/2)
=
解:
(1) ( )tf
(2) ( )
tg
(3) ( )
th
=
f(t)
1
-3 -2 -1 0 1 2 3 t
(
tf
)1-
g(t)
1
-2 -1 0 1 2 3 t
( ) ( )tutf
1
数字信号处理
习题解答 2005
h(t)
1
0 1 2 3 t
f
f
t
2
t
2
( )
(4) ( )
-5 -4 -3 -2 -1 0 1 2 3 4 5 t
1.2 设 f(t) 是某一函数,a, t0, T 为实常数,证明:
1
t
ftaf
()()()(
d
(1)
t
-
t
0
a
)
=
(2)
ftatf
()()()(
d
t
t
)
-=
0
t
0
d
-
t
0
1
aa
t
0
d
-
a
t
0
(3)
t
-
ftcombTfnTtnT
()()()(
0
T
t
)
==-
¥
-
=-¥
n
t
0
d
t
0
解:
(1)
( ) (
tf
d
t
)
=
0
t
a
( )
atf
d
(
t
)
=
( ) (
t
d
tfa
t
0
)
=
t
0
(
tfa
0
) (
t
d
)0
t
2
-
-
-
-
数字信号处理
习题解答 2005
(2)
( )
ftattft
d
(
)
-=
t
0
=
=
1
a
1
a
1
a
d
( )
( )
t
ft
d
)
(
(
(
(
d
f
t
0
a
t
t
0
a
t
0
a
)
)
)
t
0
a
(3)
( )
ftcombftnf
(
)
ttttttnT
t
00
TT
=-
=-
=-
n
1.3
=-
¥=-
( )
=
=-
¥=-
n
()(
TftttnT
(
d
d
=-
n
-=+-
TftttnTTftnTttnT
d
()(
)
T
0
)
0
)
00
(
d
)
( )
n
()(
)
d
0
n
(1) 如 f(t) F( Ω),证明:
e
yF
)(
e
F
=
)
(
t
j
j
(
ty
)
dy
=
tf
)(2
p
e
j
t
(2) 用 (a) 的结果,证明频域卷积定理
ftftF
()()()(
121
F
)
2
1
2
p
()(
*=
FeFyedyFyeedy
jtjtjyt
)
(
jy t
=
()( )
=
jtjytj
eFyedyft e
t
)
(
)
=
2
p
证明:
(1)
(2)
Fftftftftedtfteftdt
()()()( )
12121
==
+¥+¥
2
2
p
()( )
1
2
p
2
(
jy t
)
)
)
( )
)
( )
(
1
2
)
2
)
jtj
t
j
t
=W
=
=
=
=W
=
1
2
p
1
2
p
1
2
p
1
2
p
1
2
p
1
2
p
()( )
Feftdt
1
(
+¥
+¥+¥
+¥+¥
+¥+¥
(
)
(
Fyedyftdt
1
(
)
(
jy t
Fyeftdydt
1
( )
(
jy t
ftedtFydy
2
()(
)
FyFydy
2
()(
)
2F
1
+¥
F
1
3
-
-
-
¥
¥
-
-
-
-
¥
¥
¥
¥
¥
¥
-
-
W
-
¥
¥
-
-
W
-
W
-
*
W
«
W
*
W
¥
¥
-
W
-
-
W
-
W
-
¥
-
¥
¥
-
W
-
W
-
¥
W
-
W
-
W
-
¥
-
¥
-
W
-
¥
-
W
-
-
¥
-
¥
-
W
-
-
¥
-
¥
-
W
-
-
¥
-
¥
-
¥
Ø
ø
º
ß
*
-
W
*
W
数字信号处理
习题解答 2005
所以
( )
ftftF
12
( )
F p
1
2
(
1
)
2
(
)
1.4 求下图中 f(t) 脉冲的傅氏变换。
解:
T/4
T
t = ,脉冲幅度为 1,截取 f(t) 的一个周期 f0(t)。
令
T
2
则 f0(t) 的傅立叶变换为:
]
( )
t
[
fF
(
w
=
)
F
0
0
=
T
2
)
(
wt
2
Sa
=
T
2
(
T
w
4
)
Sa
得
所以
==
FFSa
1
T
n
(
w
)
0
=
1
2
=
n
w w
1
(
)1
n T
w
4
,
w
1
2
p
T
FftFF
()()(
==
n
=
pdw
=-
n
)
2
wpdw
(
Sa
w
n
w
=-
)
n T
w
1
4
注:如果用 sinc 函数表示,结果:
) (
wd
(
)
pw
sin
F
(
=
c
Tn
w
1
4
p
¥=
n
n
(
1
n
)
1
)
n
w
1
1.5 证明
(1)
HH
adW*W=W -
()()(
)
HnH
()()(
W*W+W=W+ W
)
¥
nd
=-¥=-¥
n
(2)
证明:
(1)
0
¥
n
0
=
-=W
-=W
左边
()()()()(
H
adaadaa
HdHd
)
a
(2)
4
«
W
*
W
¥
¥
¥
¥
-
Ø
ø
º
ß
-
¥
-
-
¥
¥
-
¥
-
¥
W
W
-
数字信号处理
习题解答 2005
W+W=
HnHn
()(
-+ W
=-
n
dtdt
)
d
¥=-
t
0
=W
-+ W
=-
n
=W+ W
=-
n
)
()(
n
()(
Hn
tdt
d
0
)
t
0
(
H
n
)
0
f t
1.6 设 ( )
a t
e -=
,证明脉冲序列
¥
n
=-¥
fnTtnTd
()(
)
-
的傅氏变换等于
-
2
aT
1
-
eT e
12cos
aTaT
-
-W +
e
-
2
)
nTf
d
t
nT
证明:
()()(
=
tg
设
则:
¥=
n
()()()(
=-
=
FgtFfnTtnTfnT e
¥=-
=-
)
n
d
n
jnT
anT
eeeee
e
jnTanTjnTanTjnT
0
+
=
n
1
n
=
1
e
(
-+ W
Ta j
(
e
n
=
1
e
1
aT
2
)
)
1
(
-+ W
TajTa j
)
+
e
2
e
1
eT e
2cosaTaT
W +
1
1
¥+¥
==
¥=-
=-
nn
+¥+¥
=
=
n
0
+¥+¥
n
=
0
eee
+
anTjnTanTjnT
e
-+ W
nTajnTa j
()(
)
+
e
=
=
=
1.7
(1) 证明
1
W
¥
0
n
=-¥=-¥
-
jnT
W
e
=W+WW =
(),
d
¥
n
(2) 若 f(t) F( Ω),证明
¥
()(
TfnTF
=-¥=-¥
ne
W
)
jnT
¥
n
n
-
=W+ W
n
0
2
p
T
0
0
5
¥
¥
¥
-
¥
¥
¥
¥
-
¥
¥
¥
¥
W
*
W
¥
-
-
¥
¥
-
W
¥
-
-
W
-
W
-
-
W
¥
-
W
-
-
W
-
-
W
-
-
W
-
Ø
ø
Ø
ø
º
ß
Œ
œ
º
ß
-
-
-
-
-
-
数字信号处理
习题解答 2005
证明:
(1)
etnT
jnT
=-
¥=-
n
1
0
=-
¥=-
n
n
etnT
jnT
)
(
d
(
d
1
0
n
)
( )
fttnT
=
令
(
d
1
0
=-
n
)
f(t) 为周期冲激序列,截取 f(t) 中一个周期
( )
0ft
tdW=
1
( )
,其傅立叶变换为:
Fft
( )
F
(
=W= =
0
0
)
1
1
0
1
0
所以
=W
F
n
1
T
F
0
(
)
=
W=W
0
1
T
0
则
FftFFn
()()(
=W=W
W=W+ W
)
=W+ W
2
p
T
0
=W+ W
=-
n
=-
n
d
(
2
pdp
¥=-
=-
n
(
d
n
n
d
n
0
(
1
T
0
2
n
)
0
n
)
0
)
0
jnT
e
1
0
=-
¥=-
n
(
d
=W+ W
n
n
)
0
所以
(2)
(
W+W
n
F
)
0 ,傅氏变换:
右边:
¥=
n
F
¥=
n
()()()()()(
W+W
n
0
F
=œ
)
¥=
n
etf
jn
t
0
=
tf
d
+
t
nT
=
¥=
n
¥=
n
Tf
nT
d
t
nT
左边:傅氏反变换:
1
FTfnTeTfnTtnTTfnTtnT
jnT
()()()()(
ø =
)
-=
=-
nn
¥=-
¥=-
d
n
d
所以两者相等,原式成立。
6
¥
¥
-
W
¥
¥
¥
-
W
W
W
¥
«
-
\
«
-
¥
W
¥
-
W
W
Ø
ø
º
ß
W
¥
¥
W
¥
¥
W
¥
¥
¥
-
Ø
ø
º
ß
¥
¥
-
W
W
¥
¥
-
-
ß
ø
Œ
º
Ø
¥
-
¥
-
¥
-
W
-
¥
-
¥
¥
¥
-
-
W
¥
Ø
-
Œ
œ
º
ß
数字信号处理
习题解答 2005
第二章 习题
2.1 若离散时间信号为 2cos(2πn/3), 抽样率为 2000Hz,写出所对应的模拟信号的表达式。
解:
设对应的模拟信号为: ()2cos2
xtft
=
p
由取样率为 2000Hz 得取样周期为 1/2000 秒
故
=
xnftfnT
()()|2cos(2
=
)
=
tnT
s
p
,
sT =
1/2000
s
所以
1/ 3
sfT=
解出
f =
2000/ 3
因此
xt
()2cos(4000/3)
=
tp
2.2 以抽样频率 fs=200Hz 对模拟正弦信号 ( )
ax t 进行抽样
axttttt
()6cos(60)3sin(300)2cos(340)4cos(500)10s
t
pppp
=++
p
+
+
试确定抽样后的离散信号表达式。
解:
T
s
=
1/1/200
=
f
s
xnxtnnnn
()()|6cos(0.3)3sin(1.5)2cos(1.7)4cos(2.5
aatnT
pppp
n
==+++
+
=
s
in(660
)
p
)10sin(3.3
)
2.3 下列系统中,y(n) 表示输出,x(n) 表示输入,试确定输入输出关系是否线性?是否
非移变?
(1) y(n) = 2x(n) +3
(2) y(n) = x2(n)
n
=
ynx m
)
()(
m
=-¥
(3)
解:
(1) 设输入为 x1(n) 和 x2(n),对应输出为 y1(n) 和 y2(n)
则输出为:
ny
1
+
3)(2)(
nx
1
=
,
ny
)(
2
=
+
nx
3)(2
2
ynaxnax n
()2[()()] 3
=+
112 2
+
aynay n
()( )
112
2
+
=++
axnaxna
()()3(
2
11221
+
a
)
1
„
数字信号处理
习题解答 2005
故为非线性。
设输入为:
'
nx
(
)
=
nx
(
n
0
)
则输出为:
ny
)(
'
=
nnx
(2
0
=+
3)
nny
(
)
0
故是非移变系统。
(2)设输入为 x1(n) 和 x2(n),对应输出为 y1(n) 和 y2(n)
则输出为:
ny
)(
1
ny
)(
'
=
=
2
x
1
n
)(
,
ny
)(
2
=
2
x
2
n
)(
[
nxa
)(
11
+
nxa
(
2
2
)]
2
2
ya
11
n
)(
+
ya
2
2
2
n
)(
=
2
xa
11
n
)(
+
2
xa
2
2
n
)(
故为非线性。
设输入为:
nx
)(
'
=
nnx
(
0
)
则输出为:
ny
'
)(
=
nnx
2
0
(
)
而
nny
(
0
)
=
nnx
2
(
)
0
=
ny
)(
'
故是非移变系统。
(3) 设输入为 x1(n) 和 x2(n),对应输出为 y1(n) 和 y2(n)
则输出为:
ny
)(
1
= n
¥=
m
mx
1
(
)
,
ny
)(
2
= n
¥=
m
mx
(
)
2
1
ynaxnax n
'
=
()[()()]
m
n
=-
n
+
112 2
+
axnax n
()( )
112 2
n
m
=-
¥=-
m
=
=
n
+
axnax n
()()]
112
2
=-
m
¥=-
n
m
故为线性。
设输入为:
nx
(
'
则输出为:
=
)
nx
(
n
0
)
2
-
-
-
„
-
-
-
-
-
-
¥
¥
¥
-