logo资料库

Si2301cd-datasheet(Si2301cd).pdf

第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
第4页 / 共9页
第5页 / 共9页
第6页 / 共9页
第7页 / 共9页
第8页 / 共9页
资料共9页,剩余部分请下载后查看
P-Channel 20 V (D-S) MOSFET Si2301CDS Vishay Siliconix MOSFET PRODUCT SUMMARY ID (A)a - 3.1 RDS(on) () VDS (V) - 20 0.112 at VGS = - 4.5 V 0.142 at VGS = - 2.5 V - 2.7 Qg (Typ.) 3.3 nC FEATURES • Halogen-free According to IEC 61249-2-21 Definition TrenchFET® Power MOSFET Compliant to RoHS Directive 2002/95/EC APPLICATIONS Load Switch TO-236 (SOT-23) G 1 S 2 3 D Top View Si2301CDS (N1)* * Marking Code Ordering Information: Si2301CDS-T1-E3 (Lead (Pb)-free) Si2301CDS-T1-GE3 (Lead (Pb)-free and Halogen-free) ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted) Parameter Drain-Source Voltage Gate-Source Voltage Symbol VDS VGS Continuous Drain Current (TJ = 150 °C) Pulsed Drain Current Continuous Source-Drain Diode Current Maximum Power Dissipation TC = 25 °C TC = 70 °C TA = 25 °C TA = 70 °C TC = 25 °C TA = 25 °C TC = 25 °C TC = 70 °C TA = 25 °C TA = 70 °C ID IDM IS PD Limit - 20 ± 8 - 3.1 - 2.5 - 2.3b, c - 1.8b, c - 10 - 1.3 - 0.72b, c 1.6 1.0 0.86b, c 0.55b, c Operating Junction and Storage Temperature Range TJ, Tstg - 55 to 150 Unit V A W °C THERMAL RESISTANCE RATINGS Parameter Maximum Junction-to-Ambientb, d Maximum Junction-to-Foot (Drain) 5 s Steady State Notes: a. Based on TC = 25 °C. b. Surface mounted on 1" x 1" FR4 board. c. t = 5 s. d. Maximum under steady state conditions is 175 °C/W. Document Number: 68741 S10-2430-Rev. C, 25-Oct-10 Symbol RthJA RthJF Typical 120 62 Maximum 145 78 Unit °C/W www.vishay.com 1
Si2301CDS Vishay Siliconix MOSFET SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) Parameter Test Conditions Static Symbol Min. Typ. Max. Unit Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Currenta Drain-Source On-State Resistancea Forward Transconductancea Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulse Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Reverse Recovery Fall Time Reverse Recovery Rise Time VDS VDS/TJ VGS(th)/TJ VGS(th) IGSS IDSS ID(on) RDS(on) gfs Ciss Coss Crss Qg Qgs Qgd Rg td(on) tr td(off) tf IS ISM VSD trr Qrr ta tb VGS = 0 V, ID = - 250 µA - 20 ID = - 250 µA VDS = VGS, ID = - 250 µA VDS = 0 V, VGS = ± 8 V VDS = - 20 V, VGS = 0 V VDS = - 20 V, VGS = 0 V, TJ = 55 °C VDS - 5 V, VGS = - 4.5 V VGS = - 4.5 V, ID = - 2.8 A VGS = - 2.5 V, ID = - 2.0 A VDS = - 5 V, ID = - 2.8 A - 0.4 - 6 VDS = - 10 V, VGS = 0 V, f = 1 MHz VDS = - 10 V, VGS = - 4.5 V, ID = - 3 A VDS = - 10 V, VGS = - 2.5 V, ID = - 3 A f = 1 MHz VDD = - 10 V, RL = 10  ID = - 1 A, VGEN = - 4.5 V, Rg = 1  TC = 25 °C IS = - 0.7 A IF = - 3.0 A, dI/dt = 100 A/µs, TJ = 25 °C V mV/°C V nA µA A  S pF nC  ns A V ns nC ns - 1 ± 100 - 1 - 10 0.112 0.142 10 6 20 60 50 20 - 1.3 - 10 - 1.2 50 50 - 18 2.2 0.090 0.110 9.5 405 75 55 5.5 3.3 0.7 1.3 6.0 11 35 30 10 - 0.8 30 25 15 15 Notes: a. Pulse test; pulse width  300 µs, duty cycle  2 %. b. Guaranteed by design, not subject to production testing. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. www.vishay.com 2 Document Number: 68741 S10-2430-Rev. C, 25-Oct-10
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) VGS = 5 V thru 2.5 V VGS = 2 V ) A ( t 1.00 0.75 0.50 n e r r u C n a r D i - D I 0.25 0.00 VGS = 1.5 V VGS = 1 V Si2301CDS Vishay Siliconix TC = - 55 °C TC = 25 °C TC = 125 °C 10 8 6 4 2 ) A ( t n e r r u C n a r D i - D I 0 0.0 0.20 0.15 0.10 0.05 0.00 0 ) Ω ( i e c n a t s s e R - n O - ) n o ( S D R ) V ( e g a t l o V e c r u o S - o t - e t a G - S G V 0.5 1.0 1.5 2.0 0.0 0.3 0.6 0.9 1.2 1.5 VDS - Drain-to-Source Voltage (V) Output Characteristics VGS - Gate-to-Source Voltage (V) Transfer Characteristics ) F p ( e c n a t i c a p a C - C VGS = 2.5 V VGS = 4.5 V 2 4 6 8 10 ID - Drain Current (A) On-Resistance vs. Drain Current and Gate Voltage ID = 3 A VDS = 5 V e c n a VDS = 10 V VDS = 15 V ) d e z i l a m r o N ( i t s s e R - n O - ) n o ( S D R 8 6 4 2 0 800 600 400 200 Crss 0 0 Ciss Coss 5 10 15 20 VDS - Drain-to-Source Voltage (V) Capacitance 1.5 1.3 1.1 0.9 0.7 ID = 2.8 A VGS = 4.5 V VGS = 1.8 V 0 2 4 6 8 10 - 50 - 25 0 25 50 75 100 125 150 Qg - Total Gate Charge (nC) Gate Charge TJ - Junction Temperature (°C) On-Resistance vs. Junction Temperature Document Number: 68741 S10-2430-Rev. C, 25-Oct-10 www.vishay.com 3
Si2301CDS Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) ) A ( t n e r r u C e c r u o S - S I 10 1 0.1 TJ = 150 °C TJ = 25 °C TJ = - 50 °C 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD - Source-to-Drain Voltage (V) Source-Drain Diode Forward Voltage ) V ( e c n a i r a V ) h t ( S G V 0.4 0.3 0.2 0.1 0.0 - 0.1 - 0.2 ID = 250 µA ID = 1 mA - 50 - 25 0 25 50 75 100 125 150 TJ - Temperature (°C) Threshold Voltage 10 Limited by RDS(on)* ) Ω ( e c n a i t s s e R - n O - ) n o ( S D R 0.60 0.45 0.30 0.15 0.00 0 10 8 6 4 2 ) W ( r e w o P ID = 2.8 A TJ = 125 °C TJ = 25 °C 1 2 3 4 5 VGS - Gate-to-Source Voltage (V) On-Resistance vs. Gate-to-Source Voltage TA = 25 °C 0 0.01 0.1 1 10 100 1000 Time (s) Single Pulse Power 100 µs 1 ms 10 ms 100 ms 1 s 10 s 100 s, DC ) A ( t n e r r u C n a r D i - D I 1 0.1 0.01 0.1 TA = 25 °C Single Pulse BVDSS Limited 1 10 100 VDS - Drain-to-Source Voltage (V) * VGS > minimum VGS at which RDS(on) is specified Safe Operating Area www.vishay.com 4 Document Number: 68741 S10-2430-Rev. C, 25-Oct-10
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Si2301CDS Vishay Siliconix e c n a d e p m I l a m r e h T t i n e s n a r T e v i t c e f f E d e z i l a m r o N 1 0.1 Duty Cycle = 0.5 0.2 0.1 0.05 0.02 0.01 10-4 Single Pulse 10-3 10-2 10-1 1 10 100 1000 Normalized Thermal Transient Impedance, Junction-to-Ambient Square Wave Pulse Duration (s) e c n a d e p m I l a m r e h T i t n e s n a r T e v i t c e f f E d e z i l a m r o N 1 0.1 Duty Cycle = 0.5 0.2 0.1 0.05 0.02 Single Pulse 0.01 10-4 10-3 Notes: PDM t1 t2 t1 t2 1. Duty Cycle, D = 2. Per Unit Base = RthJF = 50 °C/W 3. TJM - TA = PDMZthJA 4. Surface Mounted (t) 10-1 10-2 Square Wave Pulse Duration (s) 1 01 Normalized Thermal Transient Impedance, Junction-to-Foot Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?68741. Document Number: 68741 S10-2430-Rev. C, 25-Oct-10 www.vishay.com 5
Package Information Vishay Siliconix SOT-23 (TO-236): 3-LEAD b 3 1 2 E1 E S e e1 D A A2 A1 Dim A A1 A2 b c D E E1 e e1 L L1 S q 0.10 mm 0.004" C Seating Plane C C q 0.25 mm Gauge Plane Seating Plane L L1 MILLIMETERS INCHES Min 0.89 0.01 0.88 0.35 0.085 2.80 2.10 1.20 0.40 3° 0.95 BSC 1.90 BSC 0.64 Ref 0.50 Ref Max 1.12 0.10 1.02 0.50 0.18 3.04 2.64 1.40 0.60 8° Min 0.035 0.0004 0.0346 0.014 0.003 0.110 0.083 0.047 0.016 3° 0.0374 Ref 0.0748 Ref 0.025 Ref 0.020 Ref Max 0.044 0.004 0.040 0.020 0.007 0.120 0.104 0.055 0.024 8° ECN: S-03946-Rev. K, 09-Jul-01 DWG: 5479 Document Number: 71196 09-Jul-01 www.vishay.com 1
AN807 Vishay Siliconix Mounting LITTLE FOOTR SOT-23 Power MOSFETs Wharton McDaniel Surface-mounted LITTLE FOOT power MOSFETs use integrated circuit and small-signal packages which have been been modified to provide the heat transfer capabilities required by power devices. Leadframe materials and design, molding compounds, and die attach materials have been changed, while the footprint of the packages remains the same. See Application Note 826, Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs, (http://www.vishay.com/doc?72286), for the basis of the pad design for a LITTLE FOOT SOT-23 power MOSFET footprint . In converting this footprint to the pad set for a power device, designers must make two connections: an electrical connection and a thermal connection, to draw heat away from the package. ambient air. This pattern uses all the available area underneath the body for this purpose. 0.114 2.9 0.081 2.05 0.150 3.8 0.059 1.5 0.0394 1.0 0.037 0.95 FIGURE 1. Footprint With Copper Spreading The electrical connections for the SOT-23 are very simple. Pin 1 is the gate, pin 2 is the source, and pin 3 is the drain. As in the other LITTLE FOOT packages, the drain pin serves the additional function of providing the thermal connection from the package to the PC board. The total cross section of a copper trace connected to the drain may be adequate to carry the current required for the application, but it may be inadequate thermally. Also, heat spreads in a circular fashion from the heat source. In this case the drain pin is the heat source when looking at heat spread on the PC board. Since surface-mounted packages are small, and reflow soldering is the most common way in which these are affixed to the PC board, “thermal” connections from the planar copper to the pads have not been used. Even if additional planar copper area is used, there should be no problems in the soldering process. The actual solder connections are defined by the solder mask openings. By combining the basic footprint with the copper plane on the drain pins, the solder mask generation occurs automatically. Figure 1 shows the footprint with copper spreading for the SOT-23 package. This pattern shows the starting point for utilizing the board area available for the heat spreading copper. To create this pattern, a plane of copper overlies the drain pin and provides planar copper to draw heat from the drain lead and start the process of spreading the heat so it can be dissipated into the A final item to keep in mind is the width of the power traces. The absolute minimum power trace width must be determined by the amount of current it has to carry. For thermal reasons, this minimum width should be at least 0.020 inches. The use of wide traces connected to the drain plane provides a low-impedance path for heat to move away from the device. Document Number: 70739 26-Nov-03 www.vishay.com 1
Application Note 826 Vishay Siliconix RECOMMENDED MINIMUM PADS FOR SOT-23 0.037 (0.950) 0.022 (0.559) 6 0 1 . 0 ) 2 9 6 . 2 ( 9 4 0 . 0 ) 5 4 2 . 1 ( 9 2 0 . 0 ) 4 2 7 . 0 ( 0.053 (1.341) 0.097 (2.459) Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index Return to Index A P P L I C A T I O N N O T E Document Number: 72609 Revision: 21-Jan-08 www.vishay.com 25
分享到:
收藏