Preface
Contents
Acronyms
Part I Evolutionary Algorithms
1 Introduction to Evolutionary Single-Objective Optimisation
1.1 Introduction
1.2 Single-Objective Optimisation
1.3 Search Landscape
1.4 Penalty Functions for Handling Constraints
1.5 Classification of Optimisation Algorithms
1.6 Exploration and Exploitation
1.7 Classification of Population-Based Optimisation Algorithms
1.8 Conclusion
References
2 Particle Swarm Optimisation
2.1 Introduction
2.2 Inspiration
2.3 Mathematical Model of PSO
2.4 Analysis of PSO
2.5 Standard PSO
2.6 Binary PSO
2.7 Conclusion
References
3 Ant Colony Optimisation
3.1 Introduction
3.2 Inspiration
3.3 Mathematical Model
3.3.1 Construction Phase
3.3.2 Pheromone Phase
3.3.3 Daemon Phase
3.3.4 Max-Min Ant System
3.3.5 Ant Colony System
3.3.6 Continuous Ant Colony
3.4 ACO for Combinatorial Optimisation Problems
3.5 Conclusion
References
4 Genetic Algorithm
4.1 Introduction
4.2 Inspiration
4.3 Initial Population
4.4 Selection
4.5 Crossover (Recombination)
4.6 Mutation
4.7 Experiments When Changing the Mutation Rate
4.8 Experiment When Changing the Crossover Rate
4.9 Conclusion
References
5 Biogeography-Based Optimisation
5.1 Introduction
5.2 Inspiration
5.3 Mathematical Model
5.4 Solving Engineering Design Problems with BBO
5.4.1 Three-Bar Truss Design Problem
5.4.2 I-Beam Design Problem
5.4.3 Welded Beam Design Problem
5.4.4 Cantilever Beam Design Problem
5.4.5 Tension/compression Spring Design
5.4.6 Pressure Vessel Design
5.4.7 Gear Train Design Problem
References
Part II Evolutionary Neural Networks
6 Evolutionary Feedforward Neural Networks
6.1 Introduction
6.2 Feedforward Neural Networks
6.3 Designing Evolutionary FNNs
6.4 Results
6.4.1 XOR Dataset
6.4.2 Balloon Dataset
6.4.3 Iris Dataset
6.4.4 Breast Cancer Dataset
6.4.5 Heart Dataset
6.4.6 Discussion and Analysis of the Results
6.5 Conclusion
References
7 Evolutionary Multi-layer Perceptron
7.1 Introduction
7.2 Multi-layer Perceptrons
7.3 Evolutionary Multi-layer Percenptron
7.4 Results
7.4.1 Sigmoid Function
7.4.2 Cosine Function
7.4.3 Sine Function
7.4.4 Sphere Function
7.4.5 Griewank Function
7.4.6 Rosenbrock Function
7.4.7 Comparison with BP
7.5 Conclusion
References
8 Evolutionary Radial Basis Function Networks
8.1 Introduction
8.2 Radial Based Function Neural Networks
8.2.1 Classical Radial Basis Function Network Training
8.3 Evolutionary Algorithms for Training Radial Basis Function Networks
8.4 Experiments and Results
8.4.1 Experimental Setup
8.4.2 Datasets Description
8.4.3 Results
8.5 Conclusion
References
9 Evolutionary Deep Neural Networks
9.1 Introduction
9.2 Datasets and Evolutionary Deep Neural Networks
9.2.1 Datasets
9.2.2 Evolutionary Neural Networks
9.3 Results and Discussion
9.3.1 NN with BP
9.3.2 Training FNN Using PSO for the Dataset
9.3.3 Number of Hidden Nodes
9.3.4 Changing Nodes in One Layer
9.3.5 Changing the Number of Layers (Deep Learning)
9.3.6 Feature Selection
9.4 Conclusion
References