logo资料库

Nonlinear Time Series Nonparametric and Parametric Methods.pdf

第1页 / 共569页
第2页 / 共569页
第3页 / 共569页
第4页 / 共569页
第5页 / 共569页
第6页 / 共569页
第7页 / 共569页
第8页 / 共569页
资料共569页,剩余部分请下载后查看
foc.pdf
foc.pdf
cover.pdf
001.pdf
002.pdf
003.pdf
004.pdf
005.pdf
006.pdf
007.pdf
008.pdf
009.pdf
010.pdf
011.pdf
012.pdf
013.pdf
014.pdf
015.pdf
016.pdf
017.pdf
Binder2.pdf
001.pdf
002.pdf
003.pdf
004.pdf
005.pdf
006.pdf
007.pdf
008.pdf
009.pdf
010.pdf
011.pdf
012.pdf
013.pdf
014.pdf
015.pdf
016.pdf
017.pdf
018.pdf
019.pdf
020.pdf
021.pdf
022.pdf
023.pdf
024.pdf
025.pdf
026.pdf
027.pdf
028.pdf
029.pdf
030.pdf
031.pdf
032.pdf
033.pdf
034.pdf
035.pdf
036.pdf
037.pdf
038.pdf
039.pdf
040.pdf
041.pdf
042.pdf
043.pdf
044.pdf
045.pdf
046.pdf
047.pdf
048.pdf
049.pdf
050.pdf
051.pdf
052.pdf
053.pdf
054.pdf
055.pdf
056.pdf
057.pdf
058.pdf
059.pdf
060.pdf
061.pdf
062.pdf
063.pdf
064.pdf
065.pdf
066.pdf
067.pdf
068.pdf
069.pdf
070.pdf
071.pdf
072.pdf
073.pdf
074.pdf
075.pdf
076.pdf
077.pdf
078.pdf
079.pdf
080.pdf
081.pdf
082.pdf
083.pdf
084.pdf
085.pdf
086.pdf
087.pdf
088.pdf
089.pdf
090.pdf
091.pdf
092.pdf
093.pdf
094.pdf
095.pdf
096.pdf
097.pdf
098.pdf
099.pdf
100.pdf
101.pdf
102.pdf
103.pdf
104.pdf
105.pdf
106.pdf
107.pdf
108.pdf
109.pdf
110.pdf
111.pdf
112.pdf
113.pdf
114.pdf
115.pdf
116.pdf
117.pdf
118.pdf
119.pdf
120.pdf
121.pdf
122.pdf
123.pdf
124.pdf
125.pdf
126.pdf
127.pdf
128.pdf
129.pdf
130.pdf
131.pdf
132.pdf
133.pdf
134.pdf
135.pdf
136.pdf
137.pdf
138.pdf
139.pdf
140.pdf
141.pdf
142.pdf
143.pdf
144.pdf
145.pdf
146.pdf
147.pdf
148.pdf
149.pdf
150.pdf
151.pdf
152.pdf
153.pdf
154.pdf
155.pdf
156.pdf
157.pdf
158.pdf
159.pdf
160.pdf
161.pdf
162.pdf
163.pdf
164.pdf
165.pdf
166.pdf
167.pdf
168.pdf
169.pdf
170.pdf
171.pdf
172.pdf
173.pdf
174.pdf
175.pdf
176.pdf
177.pdf
178.pdf
179.pdf
180.pdf
part2.pdf
181.pdf
182.pdf
183.pdf
184.pdf
185.pdf
186.pdf
187.pdf
188.pdf
189.pdf
190.pdf
191.pdf
192.pdf
193.pdf
194.pdf
195.pdf
196.pdf
197.pdf
198.pdf
199.pdf
200.pdf
201.pdf
202.pdf
203.pdf
204.pdf
205.pdf
206.pdf
207.pdf
208.pdf
209.pdf
210.pdf
211.pdf
212.pdf
213.pdf
214.pdf
215.pdf
216.pdf
217.pdf
218.pdf
219.pdf
220.pdf
221.pdf
222.pdf
223.pdf
224.pdf
225.pdf
part3.pdf
Binder1.pdf
nlReader[1].pdf
nlReader[2].pdf
nlReader[1].pdf
nlReader[3].pdf
nlReader[1].pdf
nlReader[2].pdf
nlReader[4].pdf
nlReader[5].pdf
nlReader[6].pdf
nlReader[7].pdf
nlReader[8].pdf
nlReader[9].pdf
nlReader[10].pdf
nlReader[11].pdf
nlReader[12].pdf
nlReader[13].pdf
nlReader[14].pdf
nlReader[15].pdf
nlReader[16].pdf
nlReader[17].pdf
nlReader[18].pdf
nlReader[19].pdf
nlReader[20].pdf
nlReader[21].pdf
nlReader[22].pdf
nlReader[23].pdf
nlReader[24].pdf
nlReader[25].pdf
nlReader[26].pdf
nlReader[27].pdf
nlReader[28].pdf
nlReader[29].pdf
nlReader[30].pdf
nlReader[31].pdf
nlReader[32].pdf
nlReader[33].pdf
nlReader[34].pdf
nlReader[3].pdf
nlReader[4].pdf
nlReader[5].pdf
nlReader[6].pdf
nlReader[7].pdf
nlReader[8].pdf
Binder2.pdf
nlReader[9].pdf
nlReader[10].pdf
nlReader[11].pdf
nlReader[12].pdf
nlReader[13].pdf
nlReader[14].pdf
nlReader[15].pdf
nlReader[17].pdf
nlReader[18].pdf
nlReader[19].pdf
nlReader[20].pdf
nlReader[21].pdf
nlReader[22].pdf
nlReader[23].pdf
nlReader[24].pdf
nlReader[25].pdf
nlReader[26].pdf
nlReader[27].pdf
nlReader[28].pdf
nlReader[29].pdf
nlReader[30].pdf
nlReader[31].pdf
nlReader[32].pdf
nlReader[33].pdf
nlReader[34].pdf
nlReader[35].pdf
nlReader[36].pdf
nlReader[37].pdf
nlReader[1].pdf
nlReader[2].pdf
nlReader[3].pdf
nlReader[5].pdf
nlReader[6].pdf
nlReader[7].pdf
nlReader[8].pdf
nlReader[9].pdf
nlReader[10].pdf
nlReader[11].pdf
nlReader[12].pdf
nlReader[13].pdf
nlReader[14].pdf
nlReader[15].pdf
nlReader[16].pdf
nlReader[17].pdf
nlReader[18].pdf
Binder3.pdf
nlReader[19].pdf
nlReader[20].pdf
nlReader[21].pdf
nlReader[35].pdf
nlReader[36].pdf
nlReader[37].pdf
nlReader[38].pdf
nlReader[39].pdf
nlReader[40].pdf
nlReader[41].pdf
nlReader[42].pdf
nlReader[43].pdf
nlReader[44].pdf
nlReader[38].pdf
nlReader[39].pdf
nlReader[40].pdf
nlReader[41].pdf
nlReader[42].pdf
nlReader[43].pdf
nlReader[44].pdf
nlReader[45].pdf
nlReader[45].pdf
nlReader[3].pdf
nlReader[46].pdf
nlReader[47].pdf
nlReader[48].pdf
nlReader[49].pdf
nlReader[46].pdf
nlReader[2].pdf
nlReader[4].pdf
nlReader[5].pdf
nlReader[23].pdf
nlReader[50].pdf
nlReader[47].pdf
nlReader[6].pdf
nlReader[7].pdf
nlReader[8].pdf
nlReader[24].pdf
nlReader[25].pdf
nlReader[51].pdf
nlReader[52].pdf
nlReader[53].pdf
nlReader[54].pdf
nlReader[48].pdf
nlReader[9].pdf
Binder4.pdf
nlReader[26].pdf
nlReader[27].pdf
nlReader[55].pdf
nlReader[49].pdf
nlReader[10].pdf
nlReader[11].pdf
nlReader[12].pdf
nlReader[13].pdf
nlReader[14].pdf
nlReader[15].pdf
nlReader[28].pdf
nlReader[56].pdf
nlReader[57].pdf
nlReader[50].pdf
nlReader[16].pdf
nlReader[17].pdf
nlReader[18].pdf
nlReader[19].pdf
nlReader[29].pdf
nlReader[58].pdf
nlReader[51].pdf
nlReader[20].pdf
nlReader[30].pdf
nlReader[31].pdf
nlReader[32].pdf
nlReader[33].pdf
nlReader[34].pdf
nlReader[35].pdf
nlReader[36].pdf
nlReader[59].pdf
nlReader[60].pdf
nlReader[61].pdf
nlReader[52].pdf
nlReader[53].pdf
nlReader[21].pdf
nlReader[22].pdf
nlReader[23].pdf
nlReader[24].pdf
nlReader[37].pdf
nlReader[38].pdf
nlReader[39].pdf
nlReader[62].pdf
nlReader[63].pdf
nlReader[54].pdf
nlReader[25].pdf
Binder5.pdf
nlReader[40].pdf
nlReader[41].pdf
nlReader[42].pdf
nlReader[43].pdf
nlReader[44].pdf
nlReader[45].pdf
nlReader[64].pdf
nlReader[55].pdf
nlReader[26].pdf
nlReader[46].pdf
nlReader[47].pdf
nlReader[48].pdf
nlReader[49].pdf
nlReader[50].pdf
nlReader[65].pdf
nlReader[66].pdf
nlReader[56].pdf
nlReader[57].pdf
nlReader[58].pdf
nlReader[27].pdf
nlReader[51].pdf
nlReader[52].pdf
nlReader[67].pdf
nlReader[59].pdf
nlReader[28].pdf
nlReader[53].pdf
nlReader[54].pdf
nlReader[55].pdf
nlReader[68].pdf
nlReader[69].pdf
nlReader[70].pdf
nlReader[60].pdf
nlReader[29].pdf
nlReader[30].pdf
nlReader[56].pdf
nlReader[57].pdf
nlReader[71].pdf
nlReader[72].pdf
nlReader[73].pdf
nlReader[61].pdf
nlReader[62].pdf
nlReader[63].pdf
nlReader[31].pdf
nlReader[32].pdf
nlReader[33].pdf
Binder6.pdf
nlReader[34].pdf
nlReader[35].pdf
nlReader[36].pdf
nlReader[58].pdf
nlReader[59].pdf
nlReader[60].pdf
nlReader[61].pdf
nlReader[62].pdf
nlReader[63].pdf
nlReader[64].pdf
nlReader[74].pdf
nlReader[75].pdf
nlReader[64].pdf
nlReader[65].pdf
nlReader[66].pdf
nlReader[37].pdf
nlReader[65].pdf
nlReader[66].pdf
nlReader[76].pdf
nlReader[67].pdf
nlReader[68].pdf
nlReader[69].pdf
nlReader[70].pdf
nlReader[38].pdf
nlReader[67].pdf
nlReader[68].pdf
nlReader[69].pdf
nlReader[70].pdf
nlReader[77].pdf
nlReader[78].pdf
nlReader[71].pdf
nlReader[39].pdf
nlReader[71].pdf
nlReader[72].pdf
nlReader[79].pdf
nlReader[72].pdf
nlReader[73].pdf
nlReader[40].pdf
nlReader[41].pdf
nlReader[73].pdf
nlReader[80].pdf
nlReader[74].pdf
nlReader[42].pdf
nlReader[43].pdf
nlReader[44].pdf
Binder7.pdf
nlReader[74].pdf
nlReader[81].pdf
nlReader[75].pdf
nlReader[45].pdf
nlReader[75].pdf
nlReader[76].pdf
nlReader[82].pdf
nlReader[76].pdf
nlReader[46].pdf
nlReader[77].pdf
nlReader[83].pdf
nlReader[77].pdf
nlReader[78].pdf
nlReader[79].pdf
nlReader[47].pdf
nlReader[78].pdf
nlReader[79].pdf
nlReader[84].pdf
nlReader[80].pdf
nlReader[81].pdf
nlReader[48].pdf
nlReader[80].pdf
nlReader[85].pdf
nlReader[86].pdf
nlReader[82].pdf
nlReader[83].pdf
nlReader[49].pdf
nlReader[50].pdf
nlReader[81].pdf
nlReader[87].pdf
nlReader[84].pdf
nlReader[51].pdf
nlReader[82].pdf
nlReader[88].pdf
nlReader[89].pdf
nlReader[90].pdf
nlReader[85].pdf
nlReader[86].pdf
nlReader[87].pdf
nlReader[88].pdf
nlReader[52].pdf
nlReader[83].pdf
nlReader[91].pdf
nlReader[92].pdf
nlReader[93].pdf
Binder8.pdf
nlReader[94].pdf
nlReader[95].pdf
nlReader[96].pdf
nlReader[97].pdf
nlReader[89].pdf
nlReader[90].pdf
nlReader[91].pdf
nlReader[92].pdf
nlReader[93].pdf
nlReader[94].pdf
nlReader[95].pdf
nlReader[96].pdf
nlReader[97].pdf
Nonlinear Time Series: Nonparametric and Parametric Methods Jianqing Fan Qiwei Yao SPRINGER
Springer Series in Statistics Advisors: P. Bickel, P. Diggle, S. Fienberg, K. Krickeberg, I. Olkin, N. Wermuth, S. Zeger
Jianqing Fan Qiwei Yao Nonlinear Time Series Nonparametric and Parametric Methods
Jianqing Fan Department of Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 USA jqfan@princeton.edu Qiwei Yao Department of Statistics London School of Economics London WC2A 2AE UK q.yao@lse.ac.uk Library of Congress Cataloging-in-Publication Data Fan, Jianqing. Nonlinear time series : nonparametric and parametric methods / Jianqing Fan, Qiwei Yao. p. cm. — (Springer series in statistics) Includes bibliographical references and index. ISBN 0-387-95170-9 (alk. paper) 1. Time-series analysis. 2. Nonlinear theories. QA280 .F36 2003 519.2′32—dc21 I. Yao, Qiwei. II. Title. III. Series. 2002036549 Printed on acid-free paper. ISBN 0-387-95170-9  2003 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. 9 8 7 6 5 4 3 2 1 SPIN 10788773 Typesetting: Pages created by the authors using a Springer 2e macro package. www.springer-ny.com Springer-Verlag New York Berlin Heidelberg A member of BertelsmannSpringer Science+Business Media GmbH
To those Who educate us; Whom we love; and With whom we collaborate
Preface Among many exciting developments in statistics over the last two decades, nonlinear time series and data-analytic nonparametric methods have greatly advanced along seemingly unrelated paths. In spite of the fact that the ap- plication of nonparametric techniques in time series can be traced back to the 1940s at least, there still exists healthy and justified skepticism about the capability of nonparametric methods in time series analysis. As en- thusiastic explorers of the modern nonparametric toolkit, we feel obliged to assemble together in one place the newly developed relevant techniques. The aim of this book is to advocate those modern nonparametric techniques that have proven useful for analyzing real time series data, and to provoke further research in both methodology and theory for nonparametric time series analysis. Modern computers and the information age bring us opportunities with challenges. Technological inventions have led to the explosion in data col- lection (e.g., daily grocery sales, stock market trading, microarray data). The Internet makes big data warehouses readily accessible. Although clas- sic parametric models, which postulate global structures for underlying systems, are still very useful, large data sets prompt the search for more refined structures, which leads to better understanding and approximations of the real world. Beyond postulated parametric models, there are infinite other possibilities. Nonparametric techniques provide useful exploratory tools for this venture, including the suggestion of new parametric models and the validation of existing ones. In this book, we present an up-to-date picture of techniques for analyz- ing time series data. Although we have tried to maintain a good balance
viii Preface among methodology, theory, and numerical illustration, our primary goal is to present a comprehensive and self-contained account for each of the key methodologies. For practical relevant time series models, we aim for exposure with definition, probability properties (if possible), statistical in- ference methods, and numerical examples with real data sets. We also in- dicate where to find our (only our!) favorite computing codes to implement these statistical methods. When soliciting real-data examples, we attempt to maintain a good balance among different disciplines, although our per- sonal interests in quantitative finance, risk management, and biology can be easily seen. It is our hope that readers can apply these techniques to their own data sets. We trust that the book will be of interest to those coming to the area for the first time and to readers more familiar with the field. Application- oriented time series analysts will also find this book useful, as it focuses on methodology and includes several case studies with real data sets. We be- lieve that nonparametric methods must go hand-in-hand with parametric methods in applications. In particular, parametric models provide explana- tory power and concise descriptions of the underlying dynamics, which, when used sensibly, is an advantage over nonparametric models. For this reason, we have also provided a compact view of the parametric methods for both linear and selected nonlinear time series models. This will also give new comers sufficient information on the essence of the more classical approaches. We hope that this book will reflect the power of the integration of nonparametric and parametric approaches in analyzing time series data. The book has been prepared for a broad readership—the prerequisites are merely sound basic courses in probability and statistics. Although advanced mathematics has provided valuable insights into nonlinear time series, the methodological power of both nonparametric and parametric approaches can be understood without sophisticated technical details. Due to the in- nate nature of the subject, it is inevitable that we occasionally appeal to more advanced mathematics; such sections are marked with a “*”. Most technical arguments are collected in a “Complements” section at the end of each chapter, but key ideas are left within the body of the text. The introduction in Chapter 1 sets the scene for the book. Chapter 2 deals with basic probabilistic properties of time series processes. The high- lights include strict stationarity via ergodic Markov chains (§2.1) and mix- ing properties (§2.6). We also provide a generic central limit theorem for kernel-based nonparametric regression estimation for α-mixing processes. A compact view of linear ARMA models is given in Chapter 3, including Gaussian MLE (§3.3), model selection criteria (§3.4), and linear forecasting with ARIMA models (§3.7). Chapter 4 introduces three types of paramet- ric nonlinear models. An introduction on threshold models that emphasizes developments after Tong (1990) is provided. ARCH and GARCH models are presented in detail, as they are less exposed in statistical literature. The chapter concludes with a brief account of bilinear models. Chapter 5
Preface ix introduces the nonparametric kernel density estimation. This is arguably the simplest problem for understanding nonparametric techniques. The re- lation between “localization” for nonparametric problems and “whitening” for time series data is elucidated in §5.3. Applications of nonparametric techniques for estimating time trends and univariate autoregressive func- tions can be found in Chapter 6. The ideas in Chapter 5 and §6.3 provide a foundation for the nonparametric techniques introduced in the rest of the book. Chapter 7 introduces spectral density estimation and nonparametric procedures for testing whether a series is white noise. Various high-order au- toregressive models are highlighted in Chapter 8. In particular, techniques for estimating nonparametric functions in FAR models are introduced in §8.3. The additive autoregressive model is exposed in §8.5, and methods for estimating conditional variance or volatility functions are detailed in §8.7. Chapter 9 outlines approaches to testing a parametric family of models against a family of structured nonparametric models. The wide applicabil- ity of the generalized likelihood ratio test is emphasized. Chapter 10 deals with nonlinear prediction. It highlights the features that distinguish non- linear prediction from linear prediction. It also introduces nonparametric estimation for conditional predictive distribution functions and conditional minimum volume predictive intervals. 1  ppppppppppppppppp- 2 3   @ @ @R 5  - I ppppppppppppppppppppppppppppppppppppppppppp - pppppppppppppppppppp 4 6 7 6  - 6  @ @ @  pppppppppppppppppppppppppppppppppppppppppppppppppppU  @ - 8 ppppppppppppppppppppppppppppppppppppppppppp  ? 10 @ @  @@R - 9  The interdependence of the chapters is depicted above, where solid di- rected lines indicate prerequisites and dotted lines indicate weak associ- ations. For lengthy chapters, the dependence among sections is not very strong. For example, the sections in Chapter 4 are fairly independent, and so are those in Chapter 8 (except that §8.4 depends on §8.3, and §8.7 de- pends on the rest). They can be read independently. Chapter 5 and §6.3 provide a useful background for nonparametric techniques. With an under- standing of this material, readers can jump directly to sections in Chapters 8 and 9. For readers who wish to obtain an overall impression of the book, we suggest reading Chapter 1, §2.1, §2.2, Chapter 3, §4.1, §4.2, Chapter 5,
分享到:
收藏