logo资料库

Computer.Vision.A.Modern.Approach,.David.A..Forsyth,.Jean.Ponce,.2ed.pdf

第1页 / 共793页
第2页 / 共793页
第3页 / 共793页
第4页 / 共793页
第5页 / 共793页
第6页 / 共793页
第7页 / 共793页
第8页 / 共793页
资料共793页,剩余部分请下载后查看
Cover
Computer Vision: A Modern Approach
©
Dedication Page
Contents
Preface
I: IMAGE FORMATION
1 Geometric Camera Models
1.1 Image Formation
1.2 Intrinsic and Extrinsic Parameters
1.3 Geometric Camera Calibration
1.4 Notes
2 Light and Shading
2.1 Modelling Pixel Brightness
2.2 Inference from Shading
2.3 Modelling Interreflection
2.4 Shape from One Shaded Image
2.5 Notes
3 Color
3.1 Human Color Perception
3.2 The Physics of Color
3.3 Representing Color
3.4 A Model of Image Color
3.5 Inference from Color
3.6 Notes
II: EARLY VISION: JUST ONE IMAGE
4 Linear Filters
4.1 Linear Filters and Convolution
4.2 Shift Invariant Linear Systems
4.3 Spatial Frequency and Fourier Transforms
4.4 Sampling and Aliasing
4.5 Filters as Templates
4.6 Technique: Normalized Correlation and Finding Patterns
4.7 Technique: Scale and Image Pyramids
4.8 Notes
5 Local Image Features
5.1 Computing the Image Gradient
5.2 Representing the Image Gradient
5.3 Finding Corners and Building Neighborhoods
5.4 Describing Neighborhoods with SIFT and HOG Features
5.5 Computing Local Features in Practice
5.6 Notes
6 Texture
6.1 Local Texture Representations Using Filters
6.2 Pooled Texture Representations by Discovering Textons
6.3 Synthesizing Textures and Filling Holes in Images
6.4 Image Denoising
6.5 Shape from Texture
6.6 Notes
III: EARLY VISION: MULTIPLE IMAGES
7 Stereopsis
7.1 Binocular Camera Geometry and the Epipolar Constraint
7.2 Binocular Reconstruction
7.3 Human Stereopsis
7.4 Local Methods for Binocular Fusion
7.5 Global Methods for Binocular Fusion
7.6 Using More Cameras
7.7 Application: Robot Navigation
7.8 Notes
8 Structure from Motion
8.1 Internally Calibrated Perspective Cameras
8.2 Uncalibrated Weak-Perspective Cameras
8.3 Uncalibrated Perspective Cameras
8.4 Notes
IV: MID-LEVEL VISION
9 Segmentation by Clustering
9.1 Human Vision: Grouping and Gestalt
9.2 Important Applications
9.3 Image Segmentation by Clustering Pixels
9.4 Segmentation, Clustering, and Graphs
9.5 Image Segmentation in Practice
9.6 Notes
10 Grouping and Model Fitting
10.1 The Hough Transform
10.2 Fitting Lines and Planes
10.3 Fitting Curved Structures
10.4 Robustness
10.5 Fitting Using Probabilistic Models
10.6 Motion Segmentation by Parameter Estimation
10.7 Model Selection: WhichModel Is the Best Fit?
10.8 Notes
11 Tracking
11.1 Simple Tracking Strategies
11.2 Tracking Using Matching
11.3 Tracking Linear Dynamical Models with Kalman Filters
11.4 Data Association
11.5 Particle Filtering
11.6 Notes
V: HIGH-LEVEL VISION
12 Registration
12.1 Registering Rigid Objects
12.2 Model-based Vision: Registering Rigid Objects with Projection
12.3 Registering Deformable Objects
12.4 Notes
13 Smooth Surfaces and Their Outlines
13.1 Elements of Differential Geometry
13.2 Contour Geometry
13.3 Visual Events: More Differential Geometry
13.4 Notes
14 Range Data
14.1 Active Range Sensors
14.2 Range Data Segmentation
14.3 Range Image Registration and Model Acquisition
14.4 Object Recognition
14.5 Kinect
14.6 Notes
15 Learning to Classify
15.1 Classification, Error, and Loss
15.2 Major Classification Strategies
15.3 Practical Methods for Building Classifiers
15.4 Notes
16 Classifying Images
16.1 Building Good Image Features
16.2 Classifying Images of Single Objects
16.3 Image Classification in Practice
16.4 Notes
17 Detecting Objects in Images
17.1 The Sliding Window Method
17.2 Detecting Deformable Objects
17.3 The State of the Art of Object Detection
17.4 Notes
18 Topics in Object Recognition
18.1 What Should Object Recognition Do?
18.2 Feature Questions
18.3 Geometric Questions
18.4 Semantic Questions
VI: APPLICATIONS AND TOPICS
19 Image-Based Modeling and Rendering
19.1 Visual Hulls
19.2 Patch-Based Multi-View Stereopsis
19.3 The Light Field
19.4 Notes
20 Looking at People
20.1 HMM’s, Dynamic Programming, and Tree-Structured Models
20.2 Parsing People in Images
20.3 Tracking People
20.4: 3D from2D: Lifting
20.5 Activity Recognition
20.6 Resources
20.7 Notes
21 Image Search and Retrieval
21.1 The Application Context
21.2 Basic Technologies from Information Retrieval
21.3 Images as Documents
21.4 Predicting Annotations for Pictures
21.5 The State of the Art of Word Prediction
21.6 Notes
VII: BACKGROUND MATERIAL
22 Optimization Techniques
22.1 Linear Least-Squares Methods
22.2 Nonlinear Least-Squares Methods
22.3 Sparse Coding and Dictionary Learning
22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization
22.5 Notes
Bibliography
Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
Y
Z
List of Algorithms
This page intentionally left blank
COMPUTER VISION A MODERN APPROACH second edition David A. Forsyth University of Illinois at Urbana-Champaign Jean Ponce Ecole Normale Supérieure Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Vice President and Editorial Director, ECS: Marcia Horton Editor in Chief: Michael Hirsch Executive Editor: Tracy Dunkelberger Senior Project Manager: Carole Snyder Vice President Marketing: Patrice Jones Marketing Manager: Yez Alayan Marketing Coordinator: Kathryn Ferranti Marketing Assistant: Emma Snider Vice President and Director of Production: Vince O’Brien Managing Editor: Jeff Holcomb Senior Production Project Manager: Marilyn Lloyd Senior Operations Supervisor: Alan Fischer Operations Specialist: Lisa McDowell Art Director, Cover: Jayne Conte Text Permissions: Dana Weightman/RightsHouse, Inc. and Jen Roach/PreMediaGlobal Cover Image: © Maxppp/ZUMAPRESS.com Media Editor: Dan Sandin Composition: David Forsyth Printer/Binder: Edwards Brothers Cover Printer: Lehigh-Phoenix Color Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2012, 2003 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290. Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade- marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps. Library of Congress Cataloging-in-Publication Data available upon request 10 9 8 7 6 5 4 3 2 1 ISBN-13: 978-0-13-608592-8 ISBN-10: 0-13-608592-X
To my family—DAF To my father, Jean-Jacques Ponce —JP
This page intentionally left blank
Contents I IMAGE FORMATION 1 Geometric Camera Models 1.1 1.2 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Pinhole Perspective . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Weak Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Cameras with Lenses . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 The Human Eye . . . . . . . . . . . . . . . . . . . . . . . . . Intrinsic and Extrinsic Parameters . . . . . . . . . . . . . . . . . . . 1.2.1 Rigid Transformations and Homogeneous Coordinates . . . . 1.2.2 Intrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Extrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Perspective Projection Matrices . . . . . . . . . . . . . . . . . 1.2.5 Weak-Perspective Projection Matrices . . . . . . . . . . . . . 1.3 Geometric Camera Calibration . . . . . . . . . . . . . . . . . . . . . 1.3.1 A Linear Approach to Camera Calibration . . . . . . . . . . . 1.3.2 A Nonlinear Approach to Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Notes 2 Light and Shading 2.2 2.1 Modelling Pixel Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Reflection at Surfaces 2.1.2 Sources and Their Effects . . . . . . . . . . . . . . . . . . . . 2.1.3 The Lambertian+Specular Model . . . . . . . . . . . . . . . . 2.1.4 Area Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . Inference from Shading . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Radiometric Calibration and High Dynamic Range Images . . 2.2.2 The Shape of Specularities . . . . . . . . . . . . . . . . . . . Inferring Lightness and Illumination . . . . . . . . . . . . . . 2.2.3 . . 2.2.4 Photometric Stereo: Shape from Multiple Shaded Images 2.3 Modelling Interreflection . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 The Illumination at a Patch Due to an Area Source . . . . . 2.3.2 Radiosity and Exitance . . . . . . . . . . . . . . . . . . . . . 2.3.3 An Interreflection Model . . . . . . . . . . . . . . . . . . . . . 2.3.4 Qualitative Properties of Interreflections . . . . . . . . . . . . 2.4 Shape from One Shaded Image . . . . . . . . . . . . . . . . . . . . . 1 3 4 4 6 8 12 14 14 16 18 19 20 22 23 27 29 32 32 33 34 36 36 37 38 40 43 46 52 52 54 55 56 59 v
2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 vi 3 Color 3.2.1 The Color of Light Sources 3.2.2 The Color of Surfaces 3.1 Human Color Perception . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Color Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Color Receptors 3.2 The Physics of Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Representing Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Linear Color Spaces . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Non-linear Color Spaces . . . . . . . . . . . . . . . . . . . . . 3.4 A Model of Image Color . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 The Diffuse Term . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 The Specular Term . . . . . . . . . . . . . . . . . . . . . . . . Inference from Color . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Finding Specularities Using Color . . . . . . . . . . . . . . . 3.5.2 Shadow Removal Using Color . . . . . . . . . . . . . . . . . . 3.5.3 Color Constancy: Surface Color from Image Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Notes 3.5 68 68 68 71 73 73 76 77 77 83 86 88 90 90 90 92 95 99 II EARLY VISION: JUST ONE IMAGE 105 4 Linear Filters 4.2 Shift Invariant Linear Systems 107 4.1 Linear Filters and Convolution . . . . . . . . . . . . . . . . . . . . . 107 4.1.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 . . . . . . . . . . . . . . . . . . . . . 112 4.2.1 Discrete Convolution . . . . . . . . . . . . . . . . . . . . . . . 113 4.2.2 Continuous Convolution . . . . . . . . . . . . . . . . . . . . . 115 4.2.3 Edge Effects in Discrete Convolutions . . . . . . . . . . . . . 118 4.3 Spatial Frequency and Fourier Transforms . . . . . . . . . . . . . . . 118 4.3.1 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4 Sampling and Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.4.2 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Smoothing and Resampling . . . . . . . . . . . . . . . . . . . 126 4.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.5.1 Convolution as a Dot Product . . . . . . . . . . . . . . . . . 131 4.5.2 Changing Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 132 . . . . . . 132 4.6 Technique: Normalized Correlation and Finding Patterns 4.5 Filters as Templates
分享到:
收藏