logo资料库

2018年重庆小升初数学真题及答案.doc

第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
资料共14页,剩余部分请下载后查看
2018 年重庆小升初数学真题及答案 一、选择.(每小题 3 分,共 15 分) 1.(3.00 分)把一个分数的分子扩大 3 倍,分母扩大 3 倍,这个分数值( ) A.不变 B.扩大到原来的 3 倍 C.扩大到原来的 9 倍 D.缩小到原来的 2.(3.00 分)五一黄金周,甲商场以“打九折”的措施优惠,乙商场以“满 100 送 10 元的购物券”的形式促 销,叔叔打算花 230 元购物,在( )商场购物划算些. A.甲 B.乙 C.两个商场一样 D.不能判断 3.(3.00 分)下列说法不正确的是( ) A.从 6 点 30 分到 7 点,分针旋转了 180 度 B.在有余数的除法中,余数要比除数小 C.自然数是由质数和合数组成的 D.12 以内的质数有 5 个 4.(3.00 分)甲、乙二人从底楼(第一层)开始比赛爬楼梯(每两层之间楼梯的级数相同)甲跑到第 4 层时, 乙恰好到第 3 层,照这样的速度,甲跑到第 16 层时,乙跑到( )层. A.9 B.10 C.11 D.12 5.(3.00 分)小明骑自行车沿公路以 a km/h 的速度行走全程的一半,又以 b km/h 的速度行走余下的一半路 程;小刚骑自行车以 a km/h 的速度走全程时间的一半,又以 b km/h 的速度行走另一半时间,则谁走完全程 所用的时间较少?( ) A.小明 B.小刚 C.同时间 D.无法确定 二、填空.(每小题 3 分,共 15 分) 6.(3.00 分)一个数由 5 个 10,8 个 1,4 个 0.2 和 8 个 0.01 组成,这个数是 . 7.(3.00 分)8 和 12 的最小公倍数是 . 8.(3.00 分)平行四边形的面积一定,它的底和高成 比例. 9.(3.00 分)一个圆柱形水桶,桶的内直径是 4 分米,桶深 5 分米,现将 47.1 升水倒进桶里,水占水桶容积 的 %. 10.(3.00 分)如图,第(1)个多边形由正三角形“扩展”而来,边数记为 a3,第(2)个多边形由正方形“扩 展”而来,边数记为 an,依此类推,由正船边形“扩展”而来的多边形的边数记为以.(n≥3).则 an 的值
是 . 三、解答题.(共 7 个小题,共 70 分) 11. 口算. = = = = = = = = = = = = = = = = = = = = 12.(8.00 分)解方程. . 13.(12.00 分)计算. (1) (2) (3) ×[ ﹣( )]×( +…+ ). 14.(12.00 分)应用题. (1)在抗洪救灾“献爱心中”,五年级学生捐款 312 元,比六年级少捐 ,六年级学生捐款多少元? (2)甲乙两个工程队合修一段公路,计划每天修 50 米 30 天修完,实际每天多修 l0 米,实际多少天可以修
完? 15.(8.00 分)为了增强环境保护意识,6 月 5 日“世界环境日”当大,在环保局工作人员指导下,若干名“环 保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市 40 个噪声测量点在某时刻的噪声声 级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下. 组别 噪声声级分组 頻数 1 2 3 4 5 合计 44.5﹣﹣59.5 59.5﹣﹣74.5 74.5﹣﹣89.5 89.5﹣﹣104.5 104.5﹣﹣59.5 4 a 10 b 6 40 频率 0.1 0.2 0.25 c 0.15 1.00 根据表中提供的信息解答下列问题: (1)频数分布表中的 A= ,b= C ; (2)补充完整频数分布直方图; 16.(10.00 分)求图中阴影部分的面积.(单位:厘米) 17.(20.00 分)综合题. 某书店老板去图书批发市场购买某种图书,第一次用 1200 元购书若干本,按该书定价 7 元出售,很快售完.第 二次购书时,每本的批发价比第一次提高了 20%,他用 1500 元所购该书数量比第一次多 l0 本,当按定价售出
200 本时出现滞销,便以定价的 4 折售完剩余图书. (1)第二次购书时,每本书的批发价是多少元?(列方程解应用题) (2)不考虑其他因素,书店老板这两次售书总体上是赔钱,还是赚钱?若赔,赔多少?若赚,赚多少? 参考答案与试题解析 一、选择.(每小题 3 分,共 15 分) 1.(3.00 分)把一个分数的分子扩大 3 倍,分母扩大 3 倍,这个分数值( ) A.不变 B.扩大到原来的 3 倍 C.扩大到原来的 9 倍 D.缩小到原来的 【分析】根据分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0 除外),分数的大小不变.据 此解答. 【解答】解:根据分数的基本性质,一个分数,分子扩大 3 倍,分母也扩大 3 倍,这个分数值大小不变. 故选:A. 2.(3.00 分)五一黄金周,甲商场以“打九折”的措施优惠,乙商场以“满 100 送 10 元的购物券”的形式促 销,叔叔打算花 230 元购物,在( )商场购物划算些. A.甲 B.乙 C.两个商场一样 D.不能判断 【分析】甲商城:打九折是指现价是原价的 90%;把原价看成单位“1”,230 元是现价,由此求 230 元可以买 到实际多少元的商品; 乙商场:“满 100 元送 10 元购物券”,卖 230 元的商品,可以得到 20 元的赠券,由此求 230 元可以买到多少 元的商品; 再把两个商场 230 元可以买到商品价值比较即可. 【解答】解:甲商城:230÷90%≈255.6(元); 乙商场:卖 230 元的商品,可以得到 20 元的赠券: 230+20=250(元); 255.6>250; 答:叔叔在甲商场购物合算一些.
故选:A. 3.(3.00 分)下列说法不正确的是( ) A.从 6 点 30 分到 7 点,分针旋转了 180 度 B.在有余数的除法中,余数要比除数小 C.自然数是由质数和合数组成的 D.12 以内的质数有 5 个 【分析】A、根据 6:30 时分针指向 6,7 点时,分针指向 12,一共走过了 12﹣6=6 个大格子,因为每个大格 子的夹角是 30 度,所以一共是 30°×6=180°; B、在有余数的除法中,除数大于余数; C、自然数表示物体个数的数,其中 1 和 0 既不是质数,也不是合数; D、12 以内的质数有:2、3、5、7、11;共有 5 个; 据此判断即可. 【解答】解:A、从 6 点 30 分到 7 点,分针从 6 转向 12,共转过 30°×6=180°,所以题干说法正确; B、在有余数的除法中,除数大于余数,所以题干说法正确; C、自然数中,1 和 0 既不是质数也不是合数,所以题干说法错误; D、12 以内的质数有:2、3、5、7、11;共有 5 个,题干说法正确. 故选:C. 4.(3.00 分)甲、乙二人从底楼(第一层)开始比赛爬楼梯(每两层之间楼梯的级数相同)甲跑到第 4 层时, 乙恰好到第 3 层,照这样的速度,甲跑到第 16 层时,乙跑到( )层. A.9 B.10 C.11 D.12 【分析】由题意可知:甲、乙二人的速度是不变的,则速度比也是不变的,据“甲跑到第 4 层时,乙恰好到 第 3 层”可知,甲乙的速度之比为(4﹣1):(3﹣1)=3:2,甲跑到第 16 层时,跑了(16﹣1)=15 层,再据 乙的速度= ×甲的速度,即可求出乙跑的层数,再加 1,就是乙所在的楼层. 【解答】解:甲乙的速度之比:(4﹣1):(3﹣1)=3:2, 乙跑的层数:(16﹣1)× =10(层), 乙所在的楼层:10+1=11(层); 故选:C.
5.(3.00 分)小明骑自行车沿公路以 a km/h 的速度行走全程的一半,又以 b km/h 的速度行走余下的一半路 程;小刚骑自行车以 a km/h 的速度走全程时间的一半,又以 b km/h 的速度行走另一半时间,则谁走完全程 所用的时间较少?( ) A.小明 B.小刚 C.同时间 D.无法确定 【分析】把全程看作单位“1”.根据时间=路程÷速度,表示出小明所用的时间;设小刚走完全程所用时间是 x 小时,根据路程相等列方程求得 x 的值;为了比较它们的大小,可以用做差法,看差的正负性. 【解答】解:设全程为 1,小明所用时间是 ÷a+ ÷b= + = ; 设小刚走完全程所用时间是 x 小时.根据题意,得: ax+ bx=1,则 x= ; 小明所用时间减去小刚所用时间得: ﹣ = >0,即小明所用时间较多,小刚用的时间较少. 故选:B. 二、填空.(每小题 3 分,共 15 分) 6.(3.00 分)一个数由 5 个 10,8 个 1,4 个 0.2 和 8 个 0.01 组成,这个数是 58.88 . 【分析】有几个计数单位这一数位上就是几,没有计数单位的就写 0 补位,由此写出这个数. 【解答】解:一个数由 5 个 10,8 个 1,4 个 0.2 和 8 个 0.01 组成,这个数是 58.88; 故答案为:58.88. 7.(3.00 分)8 和 12 的最小公倍数是 24 . 【分析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连 乘积,即可得解. 【解答】解:8=2×2×2, 12=2×2×3, 所以 8 和 12 的最小公倍数是 2×2×2×3=24; 故答案为:24. 8.(3.00 分)平行四边形的面积一定,它的底和高成 反 比例. 【分析】判定两种相关联的量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定, 如果是比值一定就成正比例;如果是乘积一定就成反比例.
【解答】解:平行四边形的底×高=面积(一定),是乘积一定,所以它的底和高成反比例; 故答案为:反. 9.(3.00 分)一个圆柱形水桶,桶的内直径是 4 分米,桶深 5 分米,现将 47.1 升水倒进桶里,水占水桶容积 的 75 %. 【分析】根据容积的意义和容积的计算方法(圆柱的体积公式)求出水桶的容积,再根据百分数的意义,列 式解答. 【解答】解:3.14×(4÷2)2×5 =3.14×4×5 =62.8(立方分米); 62.8 立方分米=62.8 升; 47.1÷62.8=0.75=75%; 答:水占水桶容积的 75%; 故答案为:75. 10.(3.00 分)如图,第(1)个多边形由正三角形“扩展”而来,边数记为 a3,第(2)个多边形由正方形“扩 展”而来,边数记为 an,依此类推,由正船边形“扩展”而来的多边形的边数记为以.(n≥3).则 an 的值是 n(n+1) . 【分析】观察可得边数与扩展的正 n 边形的关系为 n×(n+1),据此即可解答. 【解答】解:n=3 时,边数为 3×4=12; n=4 时,边数为 4×5=20; n=5 时,边数为 5×6=30; …; 当 n=n 时,边数是 n(n+1). 所以 an 的值是 n(n+1). 故答案为:n(n+1).
三、解答题.(共 7 个小题,共 70 分) 11. 口算. = = = = = = = = = = = = = = = = = = = = 【分析】根据分数、小数四则运算的方法,直接口算得解. 【解答】 解: = , = , = = , , =5, = , = , =3, =1, = , = = , , = , = , = , = , = , = , = , = . 12.(8.00 分)解方程. .
分享到:
收藏