logo资料库

Monte Carlo Statistical Methods.pdf

第1页 / 共84页
第2页 / 共84页
第3页 / 共84页
第4页 / 共84页
第5页 / 共84页
第6页 / 共84页
第7页 / 共84页
第8页 / 共84页
资料共84页,剩余部分请下载后查看
MonteCarloStatisticalMethods ChristianP.Robert CREST,Insee,Paris GeorgeCasella CornellUniversity,Ithaca,NY DraftVersion. February, 
CHAPTER Introduction Version.February,  Untiltheadventofpowerfulandaccessiblecomputingmethods,theex- perimenterwasconfrontedwithadicultchoice.Eitherdescribeanaccu- ratemodelofaphenomenon,whichwouldusuallypreventthecomputation ofexplicitanswers,orchooseastandardmodelwhichwouldallowthiscom- putation,butwouldoftennotbeacloserepresentationofarealisticmodel. Thisdilemmaispresentinmanybranchesofstatisticalapplications,for exampleinelectricalengineering,aeronautics,biology,networks,andas- tronomy.Touserealisticmodels,theresearchersinthesedisciplineshave oftendevelopedoriginalapproachesformodelttingthatarecustomized fortheirownproblems.(Thisisparticularlytrueofphysicists,theorig- inatorsofMarkovchainMonteCarlomethods.)Traditionalmethodsof analysis,suchastheusualnumericalanalysistechniques,turnouttobe notwelladaptedforsuchsettings.Therstsectionofthischapterpresents anumberofexamplesofstatisticalmodels,someofwhichwereinstrumen- talindevelopingtheeldofsimulation-basedinference.Theremaining sectionsdescribethedicultiesspecictomostcommonstatisticalmeth- ods,whilethenalsectioncontainsacomparisonwithnumericalanalysis techniques. .StatisticalModels Inapurelystatisticalsetup,computationaldicultiesoccuratboththe levelofprobabilisticmodelingoftheinferredphenomenonandatthelevel ofstatisticalinferenceonthismodel(estimation,prediction,tests,variable selection,etc.).Intherstcase,adetailedrepresentationofthecauses ofthephenomenon,suchasaccountingforpotentialexplanatoryvariables linkedtothephenomenon,canleadtoaprobabilisticstructurewhichistoo complextoallowforaparametricrepresentationofthemodel.Moreover, theremaybenoprovisionforgettingclosed-formestimatesofquantitiesof interest.Afrequentsetupwiththistypeofcomplexityisanexpertsystems (inmedicine,physics,nance,etc.)ormoregenerallyagraphstructure. Figure..givesanexampleofsuchastructureanalyzedinSpiegelhalter etal.( ).Itisrelatedtothedetectionofaleftventriclehypertrophia (LVH),wherethelinksbetweencausesrepresentprobabilisticdependen-
n2: Disease? n4: LVH? n9: Sick? n1: Birth asphyxia? n5: Duct flow? n6: Cardiac mixing? n7: Lung parenchyma? n8: Lung flow? n3: Age at presentation?  INTRODUCTION [.. Figure...Probabilisticrepresentationoflinksbetweencausesofleftventricle hypertrophia(Source:Spiegelhalteretal., ) cies.(Themotivationbehindtheanalysisistoimprovethepredictionof thisdisease.)Inthiscase,theconditionaldistributionsofnodeswithre- specttotheirparentsleadtothejointdistribution.SeeRobert( )or Lauritzen( )forotherexamplesofcomplexexpertsystemswherethis reconstitutionisimpossible. Asecondsetupwheremodelcomplexityprohibitsanexplicitrepresen- tationappearsineconometrics(andinmanyotherareas)forstructures oflatent(ormissing)variablemodels.Givena\simple"model,aggrega- tionorremovalofsomecomponentsofthismodelmaysometimesinduce suchinvolvedstructuresthatsimulationistrulytheonlywaytodrawan inference.(Chapter providesaseriesofexamplesofsuchmodelswhere simulationmethodsarenecessary.) Example..{Censoreddatamodels{Censoreddatamodelscan beconsideredtobemissingdatamodelswheredensitiesarenotsampled directly.Toobtainestimates,andmakeinferences,usuallyrequirespro- grammingorcomputingtimeandprecludesanalyticalanswers. Barringcaseswherethecensoringphenomenoncanbeignored(seeChap- ter ),severaltypesofcensoringcanbecategorizedbytheirrelationwith anunderlying(unobserved)model,Yif(yij): (i)GivenrandomvariablesYi,whichmaybetimesofobservationorcon- centrations,theactualobservationsareYi=minfYi;ugwhereuisthe maximalobservationdurationorthesmallestmeasurableconcentration Claudine,notChristian! n20: Grunting report? n17: Right up. quad. O2? n18: CO2 report? n10: Hypoxia distribution? n11: Hypoxia in O2? n16: Lower body O2? n19: X-ray report? n12: CO2? n14: Grunting? n13: Chest X-ray? n15: LVH report?
..] STATISTICALMODELS  rate. (ii)TheoriginalvariablesYiarekeptinthesamplewithprobability(yi) andthenumberofdiscardedvariablesiseitherknownorunknown. (iii)ThevariablesYiareassociatedwithauxiliaryvariablesXigsuch thatyi=h(yi;xi)istheobservation.Typically,h(yi;xi)=min(yi;xi). Thefactthattruncationoccurred,namelythevariableIIyi>xi,maybe eitherknownorunknown. Asanexample,ifXN(;)andYN(;),thevariableZ= X^Y=min(X;Y)isdistributedas z _'z z'z + (..) where'isthedensityofthenormalN(;)distributionandisthe correspondingcdf,whichisnoteasytocompute.Similarly,ifXhasa Weibulldistributionwithtwoparameters,We(;)anddensity f(x)=xex onIR+,theobservationofthecensoredvariableZ=X^!,where!is constant,hasthedensity f(z)=zezIIz!+Z!xexdx!(z); (..) wherea()istheDiracmassata.Inthiscase,theweightoftheDirac mass,P(X!),cannotbeexplicitlycomputed. Thedistributions(..)and(..)appearnaturallyinqualitycontrol applications.There,testingofaproductmaybeofaduration!,where thequantityofinterestistimetofailure.Iftheproductisstillfunctioning attheendoftheexperiment,theobservationonfailuretimeiscensored. Similarly,inalongitudinalstudyofadisease,somepatientsmayleavethe studyeitherduetootherdeathcausesorbysimplydroppingout. k Insomecases,theadditiveformofadensity,whileformallyexplicit, prohibitsthecomputationofthedensityofasample(X;;Xn)forn large.(Here,\explicit"hastherestrictivemeaningthat\itcanbecomputed inareasonabletime".) Example..{Mixturemodels{Modelsofmixturesofdistributions arebasedontheassumptionthattheobservationsaregeneratedfromone ofkelementarydistributionsfiwithprobabilitypi,theoveralldensity being pf(x)++pkfk(x):
 INTRODUCTION [.. Anexpansionofthedistributionof(X;;Xn), nYi=fpf(xi)++pkfk(xi)g; involvesknelementaryterms,whichisprohibitiveforlargesamples.While thecomputationofstandardmomentslikethemeanorthevarianceof thesedistributionsisfeasibleinmostsetups(andthusthederivationof momentestimators,seeProblem.),therepresentationofthelikelihood (andthereforetheanalyticalcomputationofmaximumlikelihoodorBayes estimates)isgenerallyimpossibleformixtures. k Lastly,welookataparticularlyimportantexampleintheprocessing oftemporal(ortimeseries)datawherethelikelihoodcannotbewritten explicitly. Example..{Movingaveragemodel{AnMA(q)modeldescribes variables(Xt)thatcanbemodeledas(t=;:::;n) Xt="t+qXj=j"tj; (..) wherefori=q;(q);,the"i'sarei.i.d.randomvariables"i N(;)andforj=;;q,thejsareunknownparameters.Ifthe sampleconsistsoftheobservation(X;;Xn),wheren>q,thesample densityis(Problem.) qYi='"i'xPqi=i"i ZIRq(n+q) 'x^"oPqi=i"i (..) 'xnPqi=i^"ni d"d"q; with ^"=xqXi=i"i; ^"=xqXi=i"i^"; ::: ^"n=xnqXi=i^"ni: Theiterativedenitionofthe^"i'sisarealobstacletoanexplicitintegration in(..)whichhindersstatisticalinferenceinthesemodels.Notethatfor i=q;(q);;theperturbations"icanbeinterpretedasmissing k data(seeChapter ).
..] STATISTICALINFERENCE  Beforetheintroductionofsimulation-basedinference,computationaldif- cultiesencounteredinthemodelingofaproblemoftenforcedtheuse of\standardmodels"and\standard"distributions.Onecoursewouldbe tousemodelsbasedonexponentialfamilies(..)(seeLehmann, , Brown, orRobert, ),whichenjoynumerousregularityproperties (seeNote..).Anothercoursewastoabandonparametricrepresenta- tionsfornon-parametricapproacheswhicharebydenitionrobustagainst modelingerrors.Ineconometrics,thecomputingbottleneckcreatedbythe needforexplicitsolutionshasledtotheuseoflinearstructuresofdepen- dence(seeGourierouxandMonfort,  , ). .StatisticalInference Thestatisticaltechniquesthatwewillbemostconcernedwitharemax- imumlikelihoodandBayesianmethods,andtheinferencesthatcanbe drawnfromtheiruse.Intheirimplementation,theseapproachesarecus- tomarilyassociatedwithspecicmathematicalcomputations,theformer withmaximizationproblems|andthustoanimplicitdenitionofestima- torsassolutionsofmaximizationproblems|,thelaterwithintegration problems|andthustoa(formally)explicitrepresentationofestimatorsas anintegral.(SeeLehmann ,Berger ,CasellaandBerger or Robert foranintroductiontothesetechniques.)Aspreviouslymen- tioned,reductiontosimple,perhapsnon-realistic,distributionswasoften necessitatedbycomputationallimitations,butitisalsothecasethatthe reductiontosimpledistributionsdoesnotnecessarilyeliminatetheissue ofnon-explicitexpressions,whateverthestatisticaltechnique.Ourmajor focusistheapplicationofsimulation-basedtechniquestoprovidesolutions andinferenceforamorerealisticsetofmodels,andhencecircumventthe problemsassociatedwiththeneedforexplicitorcomputationallysimple answers. Alternativeapproaches(see,forinstance,GourierouxandMonfort ) involvesolvingimplicitequationsformethodsofmomentsorminimization ofgeneralizeddistances(forM-estimators).Approachesbyminimaldis- tancecaningeneralbereformulatedasmaximizationsofformallikelihoods asillustratedinExample..below,whilethemethodofmomentscan sometimesbeexpressedasaderivationofamaximizationproblem,thatis asadierenceequation.Notehoweverthatsuchaninterpretationisrare andalsothatthemethodofmomentsisgenerallysub-optimalwhencom- paredwithBayesianormaximumlikelihoodapproaches,theselattertwo methodsusingmoreecientlytheinformationcontainedinthedistribu- tionoftheobservations,accordingtotheLikelihoodPrinciple(seeRobert  ).Butthemomentestimatorsarestillofinterestasstartingvalues foriterativemethodsaimingatmaximizingthelikelihood,sincetheyare convergentinmostsetups.Forinstance,inthecaseofnormalmixtures, whilethelikelihoodisnotbounded(seeExample..below)andthere- forethereisnomaximumlikelihoodestimator,itcanbeshownthatthe
 INTRODUCTION [.. solutionofthelikelihoodequationswhichisclosertothemomentestimator isaconvergentestimator(seeLehmann ). Example..{LeastSquaresEstimators{Estimationbyleastsquares canbetracedbacktoGauss()andLegendre()(seeStigler ). Intheparticularcaseoflinearregressionweobserve(xi;Yi),i=;;n, where (..) Yi=a+bxi+"i; i=;;n; andthevariables"irepresenterrors.Theparameter(a;b)isestimatedby minimizingthedistance nXi=(yiaxib) (..) in(a;b),yieldingtheleastsquaresestimates.Ifweaddmorestructureto theerrorterm,inparticularthat"iN(;),independent(equivalently, YijxiN(axi+b;)),thelog-likelihoodfunctionfor(a;b)isproportional to log(n)nXi=(yiaxib)=; anditfollowsthatthemaximumlikelihoodestimatesofaandbareiden- ticaltotheleastsquaresestimates.However,thelikelihoodstructurealso providesanestimatorof. Therefore,if,in(..)weassumeIE("i)=,orequivalentlythatthelin- earrelationshipIE[Yjx]=ax+bholds,minimizationof(..)isequivalent, fromacomputationalpointofview,toimposinganormalityassumptionon Yconditionallyonxandapplyingmaximumlikelihood.Inthislattercase theadditionalestimatorofisconsistentifthenormalapproximationis asymptoticallyvalid. k Althoughsomewhatobvious,thisformalequivalencebetweentheopti- mizationofafunctiondependingontheobservationsandthemaximization ofalikelihoodassociatedwiththeobservationshasanontrivialoutcome, andappliesinmanyothercases.Forexample,inthecasewherethepa- rametersareconstrainedRobertsonetal.( )considerapqtableof randomvariablesYijwithmeansij,wherethemeansareincreasingini andj.Estimationoftheij'sbyminimizingthesumofthe(yijij)'sis possiblethroughthe(numerical)algorithmcalled\pool-adjacent-violators" anddevelopedbyRobertsonetal.( )tosolvethisspecicproblem.(See Problems.and..)Analternativeistouseanalgorithmbasedon simulationandarepresentationbyanormallikelihoodoftheproblem(see x..). .LikelihoodMethods Themethodofmaximumlikelihoodestimationisquiteapopulartechnique forderivingestimators.StartingfromaniidsampleX;:::;Xnfroma
分享到:
收藏