logo资料库

Attention-guided CNN for image denoising.pptx

第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
资料共20页,剩余部分请下载后查看
Attention-guided CNN for image denoising 刘颜静 2020/2/24
目 录 C O N T E N T S 01 02 03 04 Introduction Method Experiments and results Conclusion
01 Introduction
most of tranditional methods are faced with three major problems: LOGO manually selected parameters complex optimized algorithms certain noise task
LOGO deep learning method: DnCNN can use a model to deal with multi denoising tasks ,but result in performance degradation DRNN:deep recursive residual network,but high computational cost and memory consumption Most of these methods neglect that complex background can hide some key features
02 Method
LOGO
LOGO ADNet: SB + FEB + AB +RB SB:Sparse block uses the dilated and standard convolutions to enlarge the receptive field size for improving denoising performance FEB:Feature enhancement block integrates the global and local features of ADNet via a long path to enhance the expressive ability AB:Attention block can quickly capture the key noisy features hidden in the complex background for complex noisy tasks RB:Reconstruction block reconstruct the clean image
分享到:
收藏