习习习习 题题题题 一一一一
1.1.1.1. 设 λ为的任一特征值,,,,则因
λ=0=0=0=0 或 2.2.2.2.
2.2.2.2. AAAA~BBBB,,,, CCCC~DDDD时,,,, 分别存在可逆矩阵 PPPP和 QQQQ,,,, 使得 PPPP 1− APAPAPAP====BBBB,,,, QQQQ 1− CQCQCQCQ====DDDD....令
OOOO 的特征值,,,, 故
2 − 为 AAAA
λλ 2
2
− λλ
− AAAA22
=
=
2
0
.... 即
TTTT====
⎛
⎜⎜
⎝
OOOOPPPP
⎞
⎟⎟
QQQQOOOO
⎠
OOOOPPPP
⎛
1
−
⎜⎜
QQQQOOOO
1
−
⎝
则 TTTT是可逆矩阵,,,,且 TTTT 1−
⎛
⎜⎜
⎝
3.3.3.3. 设 iiiixxxx 是对应于特征值 iλ的特征向量,,,, 则 AAAA iiiixxxx==== iλ iiiixxxx,,,, 用 1−AAAA 左乘得
OOOOAAAA
⎛
⎞
⎟⎟
⎜⎜
CCCCOOOO
⎝
⎠
OOOOAAAA
⎞
⎟⎟
CCCCOOOO
⎠
OOOOPPPP
⎞
⎟⎟
QQQQOOOO
⎠
⎞
⎛
⎟⎟
⎜⎜
⎝
⎠
TTTT====
⎛
⎜⎜
⎝
====
OOOOBBBB
⎞
⎟⎟
DDDDOOOO
⎠
λ=
xxxx
iiii
1−
xxxxAAAA
iiii
iiii
....即
1
−
xxxxAAAA
iiii
λ=
1
−
iiii
xxxx
iiii
故 1−
iλ 是 AAAA的特征值,,,, iiii====1,2,1,2,1,2,1,2,
,⋯ nnnn....
4.4.4.4.
(1)(1)(1)(1) 可以....
====
AAAAEEEE−λ
(
−
λλλ
)(1
)(1
+
−
)2
,,,,
=PPPP
(2)(2)(2)(2) 不可以....
(3)(3)(3)(3)
PPPP
=
010
101
110
⎞
⎟
⎟
⎟
⎠
⎛
⎜
⎜
⎜
⎝
,,,,
−
1APAPAPAPPPPP
=
⎛
⎜
⎜
⎜
⎝
,,,,
−
1APAPAPAPPPPP
=
1
⎛−
⎜
⎜
⎜
⎝
1
....
⎞
⎟
⎟
⎟
⎠
2
⎛
⎜
⎜
⎜
⎝
2
−
−
21
4
003
04
1
⎞
⎟
⎟
⎟
⎠
2
....
⎞
⎟
⎟
⎟
⎠
1
5.5.5.5.
(1)(1)(1)(1) AAAA的特征值是 0,0,0,0, 1,1,1,1, 2.2.2.2. 故 AAAA====-((((bbbb-aaaa)))) 2 =0.=0.=0.=0. 从而 bbbb====aaaa....又
=
AAAAIIII
−λ
1
−λ
a
−
1
−
01
⎛−
⎜
0
⎜
⎜
01
⎝
====
(
AAAAIIII−λ
−
λ
a
−
1
−λ
a
−
1
⎞
⎟
01
⎟
⎟
1
⎠
λ
+
(2)(2)(2)(2) PPPP====
()2
2
....
)1
6.6.6.6.
1
−
a
−
1
−λ
====
−
aλλλ
2
−
−
2
3
(
2
+
)2
将λ=1,=1,=1,=1, 2222 代入上式求得 AAAA=0.=0.=0.=0.
,,,, AAAA有特征值 2,2,2,2, 2,2,2,2, -1.1.1.1.
λ=2=2=2=2 所对应的方程组 (2(2(2(2IIII-AAAA))))xxxx=0=0=0=0 有解向量 pppp1====
λ====-1111 所对应的方程组 ((((IIII++++AAAA))))xxxx=0=0=0=0 有解向量 pppp3 ====
令 PPPP=(=(=(=(pppp ,1 pppp ,2 pppp3 )=)=)=)=
⎛
⎜
⎜
⎜
⎝
100
2
⎛
⎜
AAAA100 ====PPPP
⎜
⎜
⎝
111
004
140
⎞
⎟
⎟
⎟
⎠
1
2
100
,,,, 则 PPPP 1− ====
⎞
⎟
⎟
⎟
⎠
0
4
−
16
1
12
⎛
⎜
⎜
⎜
⎝
100
PPPP 1− ====
24
−
0
⋅−
244
1
3
⎛
⎜
⎜
⎜
⎝
−
100
2
23
⋅
2
100
0
4
4
⎞
⎟
⎟
⎟
⎠
100
2
−
.... 于是有
−
1
0
100
−
1
....
⎞
⎟
⎟
⎟
⎠
−
241
⋅
100
1
,,,,
pppp2 ====
⎛
⎜
⎜
⎜
⎝
1
0
4
⎞
⎟
⎟
⎟
⎠
1
⎛
⎞
⎜
⎟
4
⎜
⎟
⎜
⎟
0
⎝
⎠
1
⎛
⎞
⎜
⎟
0
⎜
⎟
⎜
⎟
0
⎝
⎠
3
1
4
1
−
100
7777. (1)(1)(1)(1)
AAAAIIII−λ
====
(2
+λλ
)1
====DDDD3 ((((λ),),),), λIIII-AAAA有 2222 阶子式
1
−
21
λ
−
1
−
17
−
====λ-4444
λ-4444 不是 DDDD3 (((( λ))))的因子,,,, 所以 DDDD2 (((( λ)=)=)=)=DDDD1(((( λ)=1,
)=1, AAAA的初等因子为 λ-1,1,1,1,
)=1,
)=1,
标准形为 JJJJ ====
设 AAAA的相似变换矩阵为 PPPP=(=(=(=(pppp1,,,,pppp2 ,,,,pppp3),),),), 则由 APAPAPAP====PJPJPJPJ得
2λ .... AAAA的 Jorda
Jorda
Jordannnn
Jorda
pppp
−=
1
=
=
ApApApAp
1
ApApApAp
2
ppppApApApAp
2
0000 解
⎧
⎪
⎨
⎪
⎩
3
⎞
⎟
⎟
⎟
⎠
⎛−
⎜
⎜
⎜
⎝
1
3
4
001
00
1
000
1
−
2
−
2
;;;;
⎞
⎟
⎟
⎟
⎠
出 PPPP====
−
−
1
1
1
⎛
⎜
⎜
⎜
⎝
−
(2)(2)(2)(2) 因为
λλDDDD
−
=
(
)
(
3
()1
2
−
λ
),2
DDDD
2
λ DDDD
)
(
1
= λ
(
1)
=
,故 AAAA~JJJJ====
设变换矩阵为 PPPP=(=(=(=(
pppppppppppp
3
1
,
,
2
),),),), 则
1
⎧
⎪
⎨
⎪
⎩
),2
ppppApApApAp
1
ppppppppApApApAp
2
2
ApApApAp
3
+= λλDDDD
+
1
2pppp
3
)
=
=
=
(2
,1
⇒PPPP====
(3)(3)(3)(3)
DDDD
3
(
λλ
=
)
AAAAIIII
−
=
(
+
λ
2
()1
−
λ
....AAAA的不变因子是
011
010
200
⎞
⎟
⎟
⎟
⎠
8
5
5
⎞
⎟
⎟
⎟
⎠
−
⎛
⎜
⎜
⎜
⎝
03
⎛
⎜
3
1
⎜
⎜
02
⎝
=λDDDD
1)
(1
1
−
−
−
⎛
⎜
⎜
⎜
⎝
⎞
⎟
⎟
⎟
⎠
−
1
2
,11 =dddd
+= λdddd
2
,1
λdddd
+
3
=
(
)(1
−
λ
)2
AAAA~JJJJ====
因为 AAAA可对角化,可分别求出特征值-1111,2222 所对应的三个线性无关的特征向量:
当 λ====-1111 时,解方程组
(
+ xxxxAAAAIIII
=
)
,0
求得两个线性无关的特征向
=pppp
1
当 λ=2=2=2=2 时,解方程组
2(
− xxxxAAAAIIII
=
)
,0
得
3pppp
=
⎛−
⎜
⎜
⎜
⎝
2
1
1
⎞
⎟
⎟
⎟
⎠
,,,,
PPPP====
1
−
0
1
⎛
⎜
⎜
⎜
⎝
−
2
1
0
(4)(4)(4)(4) 因
λ AAAAIIII
=−
+
λ
1
1
21
λ
1
⎛
⎜
⎜
⎜
⎝
6
−
3
−
4
−
λ
⎞
⎟
⎟
⎟
⎠
~
设变换矩阵为 PPPP====
(
pppppppppppp
3
1
,
,
2
)
,,,, 则
⎧
⎪
⎨
⎪
⎩
(
λ
1
1
−
λ
⎛
⎜
⎜
⎜
⎝
ppppApApApAp
1
ppppApApApAp
2
ppppppppApApApAp
3
=
=
=
+
2
1
2
3
⎞
⎟
⎟
⎟
⎠
−
2)1
,,,, 故 AAAA~JJJJ====
1
⎛
⎜
⎜
⎜
⎝
⎞
⎟
,
⎟
⎟
⎠
2pppp
=
⎛−
⎜
⎜
⎜
⎝
2
1
0
⎞
⎟
⎟
⎟
⎠
⎛−
⎜
⎜
⎜
⎝
2
−
1
1
1
0
1
⎞
⎟
⎟
⎟
⎠
⎞
⎟
⎟
⎟
⎠
11
10
1, pppppppp 是线性方程组
2
(
− xxxxAAAAIIII
)
0000=
的解向量,此方程仴的一般解形为 pppp====
ts 3
+−
⎞
⎟
s
⎟
⎟
t
⎠
⎛
⎜
⎜
⎜
⎝
取
1pppp
=
⎛−
⎜
⎜
⎜
⎝
1
1
0
⎞
⎟
⎟
⎟
⎠
,,,,
2pppp
=
3
0
1
⎛
⎜
⎜
⎜
⎝
⎞
⎟
⎟
⎟
⎠
为求滿足方程
(
ppppAAAAIIII
−
3
)
−=
pppp
2
的解向量 3pppp,,,, 再取
2 pppppppp = 根据
,
2
由此可得 ssss====tttt,,,, 从而向量
xx
1
2
+
−
x
3
3
−=
s
~
⎛
⎜
⎜
⎜
⎝
3
−
0
0
11
00
00
s
−
⎞
⎟
ts
3
3
−
⎟
⎟
ts
−
⎠
的坐标应満足方程
22
11
11
⎛
⎜
⎜
⎜
⎝
6
−
3
−
3
−
(
ts
3
−
⎞
⎟
s
−
⎟
⎟
t
−
⎠
xxx=pppp
,
)
T
3
3
2
31
−
01
0
1
,
1
⎞
⎟
⎟
⎟
⎠
1
−
0
0
⎛
⎜
⎜
⎜
⎝
.... AAAA的最小多项式为
4
(λAm ++++
)
+
48
95
61
−
,,,, 设 ffff((((λ)=)=)=)=
4
2
λ
24 2
37
− λ
λ
3
−
⎛
⎜
0
⎜
⎜
0
⎝
IIIIAAAA
10
10
====
+
−
7
37
3
(
2
−
λλλAAAAm
)
=
,,,, 于是
26
−
⎞
⎟
61
−
⎟
⎟
34
⎠
3
12
λ
−
19
2
λ
+
....
取
)0,0,1(−=pppp
3
T
,,,, 最后得 PPPP====
8.8.8.8. 设 ffff((((λ)=)=)=)=
((((λ)=()=()=()=(
4
+
2
2
8
λλλλ
+
),),),),
2
14
3
5
−
−
λλλλ
+
9
3
2
−
5
+
4
5
−
ffff((((AAAA)=)=)=)=
AAAA
24 2
−
+
1
,,,,作带余除法得
ffff
9.9.9.9. AAAA的最小多项式为
ffff((((λ)=)=)=)=
2(
2
λ
AAAAm+
(
)
)5
λ
2
(
)
6
=
λλλAm
2+λ .... 于是 [[[[ffff((((AAAA)])])])] 1− ====
++++
+
(
+ IIIIAAAA
1)2
−
....由此求出 [[[[ffff((((AAAA)])])])] 1− ====
−
29
+
λ
,,,,则
37
1
⎛
⎜⎜
23
⎝
17
32
⎞
⎟⎟
⎠
−
,,,, AAAA的最小多项式为
( −λ
2)1
;;;;
10.10.10.10. (1)(1)(1)(1) λIIII-AAAA====
21
λ
1
⎛
⎜
⎜
⎜
⎝
)(1
− λ
+
+
λ
1
1
)1
;;;;
6
−
3
−
4
−
λ
(3)(3)(3)(3)
标准形
⎞
⎟
⎟
⎟
⎠
2λ ....
1
0
0
⎛
⎜
⎜
⎜
⎝
0
−
λ
0
1
0
0
−
2)1
⎞
⎟
⎟
⎟
⎠
(
λ
2)2)2)2)
(
λ
,,,, AAAA====
−
−
−
11
34
88
⎛
⎜
⎜
⎜
⎝
0
0
1
−
⎞
⎟
⎟
⎟
⎠
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
11.11.11.11. 将方程组写成矩阵形式::::
x
d
1
t
d
x
d
2
t
d
x
d
3
t
d
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
=
11
−
34
−
88
−
⎛
⎜
⎜
⎜
⎝
0
0
1
⎛
⎞
⎜
⎟
⎜
⎟
⎜
⎟
⎝
⎠
x
1
x
2
x
3
⎞
⎟
⎟
⎟
⎠
−
,,,,
xxxx
=
xxxx
1
xxxx
2
xxxx
3
⎛
⎜
⎜
⎜
⎝
⎞
⎟
⎟
⎟
⎠
,,,,
则有 JJJJ====PAPPAPPAPPAP 1− ====
11
1
0
00
⎛
⎜
⎜
⎜
⎝
0
0
−1
⎞
⎟
⎟
⎟
⎠
,,,,
....其中 PPPP====
⎛
⎜
⎜
⎜
⎝
令 x=Pyx=Pyx=Pyx=Py,,,, 将原方程组改写成 ::::
d
d
JyJyJyJyyyyy
,
=
t
则
d
d
=
xxxx
t
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝
x
d
1
t
d
x
d
2
t
d
x
d
3
t
d
001
⎞
⎟
012
⎟
⎟
124
⎠
⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎩
y
d
1
t
d
y
d
2
t
d
y
d
3
t
d
−=
=
=
....
y
1
yy
1
2
+
y
3
解此方程组得:::: yyyy1====CCCC1eeeet++++CCCC2TTTTeeee t,,,, yyyy2 ====CCCC2 eeeet,,,, yyyy3 ====CCCC3 eeee t− .... 于是
xxxx====PyPyPyPy====
t
t
c
e
1
t
+
tc
e
⎛
+
⎜
2
t(c
)
c
e1
e2
2
+
⎜
1
2
⎜
c
t(c
c)
e2
4
e4
t
t
+
+
+
⎝
1
2
3
,,,,AAAA有特征值 10,10,10,10, 2,2,2,2, 2.2.2.2.
(
)(10
2)1
λ
−
−
λ
⎞
⎟
⎟
⎟
⎠
e
−t
....
t
(1)(1)(1)(1) AAAA是实对称矩阵....
12.12.12.12.
当 λ=10=10=10=10 时.... 对应的齐次线性方程组 (10(10(10(10IIII-AAAA))))xxxx=0=0=0=0 的系数矩阵
AAAAIIII−λ
====
3
8
2
2
−
⎛
⎜
⎜
⎜
⎝
−
22
45
54
⎞
⎟
⎟
⎟
⎠
~
102
110
000
⎞
⎟
⎟
⎟
⎠
⎛
⎜
⎜
⎜
⎝
由此求出特征向量 pppp1=(=(=(=(-1,1,1,1, -2,2,2,2, 2)2)2)2) T ,,,, 单位化后得 eeee1==== ((((
−
当 λ=1=1=1=1 时,,,, 对应的齐次线性方程组 ((((IIII-AAAA))))xxxx=0=0=0=0 的系数矩阵
1
−
2
−
2
⎛
⎜
⎜
⎜
⎝
−
−
2
4
4
2
4
4
⎞
⎟
⎟
⎟
⎠
−
~
21
00
00
⎛
⎜
⎜
⎜
⎝
−
2
0
0
⎞
⎟
⎟
⎟
⎠
1
3
,
−
2
3
,
)))) T ....
2
3
由此求出特征向量 pppp2 =(=(=(=(-2,2,2,2, 1,1,1,1, 0)0)0)0) T ,,,, pppp3 =(2,=(2,=(2,=(2, 0,0,0,0, 1)1)1)1) T .... 单位化后得 eeee2 =(=(=(=(
−
2
5
,
1
5
0,
)))) T ,,,,
−
2
5
1
5
0
−
−
1
3
2
3
2
3
2
53
4
53
5
53
⎛
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝
⎞
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠
,,,, 则 UUUU 1− AUAUAUAU====
10
⎛
⎜
⎜
⎜
⎝
1
....
⎞
⎟
⎟
⎟
⎠
1
eeee3 =(=(=(=(
2
53
,
4
53
,
5
53
)))) T .... 令 UUUU====
(2)(2)(2)(2) AAAA是 Hermit
Hermit
Hermit 矩阵.... 同理可求出相似变换矩阵
Hermit
1
2
−
0
0
UUUU====
−
,,,, UUUU 1− AUAUAUAU====
⎛
⎜
⎜
⎜
⎝
2
− 2
....
⎞
⎟
⎟
⎟
⎠
⎛
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝
i
2
1
2
i
−
2
1
2
1
2
i
2
1
2
⎞
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠
13.13.13.13. 若 AAAA是 Hermit
Hermit 正定矩阵,,,,则由定理 1.241.241.241.24 可知存在 nnnn阶酉矩阵 UUUU,,,, 使得
Hermit
Hermit
UUUUHAUAUAUAU====
λ
1
⎛
⎜
⎜
⎜
⎜⎜
⎝
⎞
⎟
⎟
⎟
⎟⎟
nλ
⎠
λ
1
λ
2
⋱
⎛
⎜
⎜
==== UUUU
⎜
⎜
⎜
⎝
,,,,
iλ ﹥0,0,0,0, IIII====1,1,1,1, 2,2,2,2,
λ
1
⎛
⎜
⎜
,⋯ nnnn....于是 AAAA====UUUU
⎜
⎜⎜
⎝
λ
2
⋱
λ
2
⋱
λ
1
⎛
⎜
⎜
UUUUHUUUU
⎜
⎜
⎜
⎝
λ
2
⋱
⎞
⎟
⎟
⎟
⎟
⎟
⎠
nλ
⎞
⎟
⎟
⎟
⎟
⎟
nλ
⎠
λ
1
UUUUH
⎞
⎟
⎟
⎟
⎟⎟
⎠
nλ
UUUUH
令
λ
2
⎛
⎞
⎜
⎟
⎜
⎟
BBBB====UUUU
⎜
⎟
⎜
⎟
⎜
⎟
nλ
⎠
⎝
则 A=BA=BA=BA=B2....反之,,,,当 A=BA=BA=BA=B2 且 BBBB是 Hermit
Hermit
Hermit 正定矩阵时,,,,则因 Hermit
Hermit
Hermi
Hermitttt
Hermit
Hermit
Hermi
Hermit 正定矩阵的乘积仍为 Hermi
正定矩阵,,,,故 AAAA是 Hermit
Hermit
Hermit 正定的....
Hermit
Hermit 矩阵,,,,则存在酉矩阵 U,U,U,U,使得 UUUUHAUAUAUAU=diag(
(2). 因 AAAA是 Hermit
1 ⋯ ))))
Hermit
(2).
14.14.14.14. (1)(1)(1)(1) ⇒ (2).
=diag(
(2).
Hermit
=diag(
=diag(
,
,
nλ
λλ
2
令 xxxx====UyUyUyUy,,,, 其中 y=ey=ey=ey=ek.... 则 xxxx≠ 0.0.0.0. 于是 xxxxHAxAxAxAx====yyyyH ((((UUUUHAUAUAUAU))))yyyy==== kλ ≧0000 ((((kkkk=1,=1,=1,=1, 2,2,2,2,
,⋯ nnnn).).).).
UUUUH
⋱
,
4
1 ⋯ ))))UUUUH====UUUUdiag(
(3). AAAA====UUUUdiag(
diag(
(3).
(2)(2)(2)(2) ⇒ (3).
diag(
diag(
(3).
diag(
diag(
diag(
,
λλ
2
,
,
λλ
令
1
2
(1). 任取 xxxx≠ 0,0,0,0, 有 xxxxHAxAxAxAx====xxxxHPPPPHPxPxPxPx====
(1).
(3)(3)(3)(3) ⇒ (1).
(1).
,
nλ
PPPP=diag(
=diag(
=diag(
=diag(
,
,
⋯
nλ
)diag(
)diag(
)diag(
)diag(
,
,
λλ
2
1
))))UUUUH,,,, 则 AAAA====PPPPHPPPP....
⋯
,
nλ
2
2PxPxPxPx ≧0.0.0.0.
习习习习 题题题题 二二二二
λλ
1
2
,
,
⋯
,
))))UUUUH
nλ
1xxxx ====
1.1.1.1.
2
i4
i1
+−++
=max{
=max
=max
∞xxxx =max
, −
,
i1
2
+
2.2.2.2. 当 xxxx≠ 0000 时,,,, 有 xxxx ﹥0;0;0;0; 当 xxxx﹦0000 时,,,, 显然有 xxxx=0.=0.=0.=0. 对任意 ∈λ CCCC,,,, 有
=7+=7+=7+=7+ 2 ,,,,
01
++
}1
=4.=4.=4.=4.
,
i4
−+−
i)4i(4
i)1i)(
2xxxx ====
)2(
1(
−
+
+
2
+
1
==== 23 ,,,,
nnnn
nnnn
xxxxλ ====
= ∑
ξωλ
kkkkkkkk
Minkowski
为证明三角不等式成立,,,,先证明 Minkowski
Minkowski 不等式::::
Minkowski
λξω
kkkk
∑
λ
kkkk
1
=
=
kkkk
=
kkkk
2
1
2
xxxx
....
设 1111≦pppp﹤∞,,,, 则对任意实数 xxxxk,,,,yyyyk((((kkkk=1,=1,=1,=1, 2,2,2,2,
,⋯ nnnn))))有
k yx
k
+
p
)
1
p
≦
(
1
pp
)
+
(
x
k
n
∑
k
1
=
1
pp
)
y
k
n
∑
k
=
1
证 当 pppp=1=1=1=1 时,此不等式显然成立.... 下设 pppp﹥1,1,1,1, 则有
k yx
k
+
p
≦
yxx
kk
k
+
p
−
1
+
yxy
k
k
+
k
p
−
1
n
∑
k
=
1
n
∑
k
1
=
n
(∑
k
1
=
n
∑
k
=
1
对上式右边的每一个加式分别使用 HHHHölder 不等式, 并由 (p-1)q=p, 得
n
∑
k
=
1
k yx
k
+
p
≦
(
n
∑
k
1
=
1
p
(
x
k
p
)
n
∑
k
1
=
yx
k
k
+
(
qp
)1
−
1
q
)
+
(
n
∑
k
1
=
1
p
(
y
k
p
)
n
∑
k
1
=
yx
k
k
+
(
qp
)1
−
1
q
)
====
[(
1
q
k yx
k
+
p
)
n
∑
k
=
1
1
p
+
(
x
k
p
)
n
∑
k
=
1
1
p
](
y
k
p
)
n
∑
k
=
1
1
q
yx
k
k
+
p
)
Minkowski
除上式两边,,,,即得 Minkowski
Minkowski 不等式....
Minkowski
2
,
,
1 ⋯ )))) T ∈CCCC n,,,, 则有
,
nnnnηηη
nnnn
∑
2ηξω
kkkk
==== ∑
kkkkkkkk
+
(
n
kkkk
=
1
k
=
1
ηξω
k
kk
+
2)
n
≦ ∑
k
=
1
(
ηωξω
kk
kk
+
2)
再用
n
(∑
k
1
=
现设任意 yyyy=(=(=(=(
yyyyxxxx
+
=
n
∑
k
=
1
≦
(
ξω
kk
2
)
+
(
ηω
j
k
2
====
yyyyxxxx +
....
n
∑
k
=
1
3.3.3.3.
(1)(1)(1)(1) 函数的非负性与齐次性是显然的,,,,我们只证三角不等式....利用最大函数的等价定义::::
max(max(max(max(AAAA,,,, BBBB)=)=)=)=
≦max(max(max(max(
)
bbbb
xxxx
aaaa
+
(
1
2
xxxxyyyy
,
aaaa
baba
)
−++
+
bbbb
yyyy
bbbb
))))
)
xxxx
aaaa
+
+
bbbb
yyyy
+
aaaa
yyyy
+
bbbb
xxxx
aaaa
+
yyyy
−
aaaa
xxxx
−
bbbb
yyyy
bbbb
max(max(max(max(
yyyyxxxxyyyyxxxx
+
+
,
aaaa
xxxx
(
xxxx
+
aaaa
xxxx
+
bbbb
yyyy
+
aaaa
yyyy
−
xxxx
bbbb
+
yyyy
−
aaaa
yyyy
bbbb
)
aaaa
xxxx
aaaa
bbbb
xxxx
+
+
aaaa xxxxxxxx ,
bbbb
xxxx
aaaa
−
xxxx
)+max(
)+max(
)+max(
)+max(
bbbb
=max(
=max(
=max(
=max(
bbbb
+
xxxx
1
)
(
+
2
aaaa yyyyyyyy ,
====
≦
====
1
(
2
1
2
1
(
2
yyyy
+
aaaa
yyyy
+
bbbb
yyyy
aaaa
−
yyyy
)
bbbb
))))
bbbb
5
aaaayyyyxxxx+
(2)(2)(2)(2) 只证三角不等式....
kkkk1
=(=(=(=( kkkk1
4.4.4.4.
bbbbyyyyxxxx+ ≦kkkk1
bbbbxxxx )+()+()+()+( kkkk1
++++=AAAA
53
++++kkkk2
aaaaxxxx ++++kkkk2
i1
1m
aaaaxxxx ++++kkkk1
aaaayyyy ++++kkkk2
bbbbxxxx ++++kkkk2
bbbbyyyy
aaaayyyy ++++kkkk2
bbbbyyyy )))) ....
18
i4
=+++
132
+
2
;;;;
2
2
;;;;
;;;;
∞
2
2
2
2
F
3
5
3
+
+
+
i4
15
66
AAAA
i1
+
m =
=AAAA
1
2
=+
+
+
∞AAAA ====行和范数((((最大行模和)=9)=9)=9)=9 ;;;;
;;;;
=1AAAA 列和范数((((最大列模和)=)=)=)=
2
7 +
5.5.5.5. 非负性:::: AAAA≠OOOO时 SSSS 1− AAAASSSS≠O,O,O,O, 于是
1ASASASASSSSSAAAA
齐次性:::: 设λ∈C,C,C,C, 则
)
三角不等式::::
( SSSSAAAASSSSAAAA
λ
1
m
1ASASASASSSSS−
1
=
(
=
ASASASASSSSS
λ
=
m
SSSSBBBBAAAASSSSBBBBAAAA
BSBSBSBSSSSSASASASASSSSS
)
=
BSBSBSBSSSSS
1
+
=
−
m
SSSS
ASSASSASSASS
BSBSBSBS
1
1
−
−
BSBSBSBSSSSSASASASASSSSS
相容性::::
6.6.6.6. 因为 IIIIn≠OOOO,,,, 所以 nnnnIIII >0.0.0.0.从而利用矩阵范数的相容性得::::
SSSSABABABABSSSS
==== λ AAAA;;;;
BBBBAAAA
ABABABAB
m
=
≦
λ
;;;;
1
=
+
+
+
+
=
)
(
m
m
m
m
m
m
−
−
−
−
1
−
1
−
1
−
1
−
−
1
==== AAAA BBBB ....
m
>0.0.0.0. AAAA====OOOO时,,,, 显然 AAAA=0;=0;=0;=0;
7. 设 AAAA=(AAAAij)∈CCCC nn× , xxxx=
IIIIIIII
nnnnnnnn
),,,(
T
ξξ
∈
1
IIII =
nnnn
n⋯
ξ
2
≦ nnnnIIII
C n, 且 AAAA=
nnnnIIII ,,,,即 nnnnIIII ≧1.1.1.1.
, 则
a
ij
max
ji
,
AxAxAxAx
1
∑∑=
iiii kkkk
ξa
kkkkikikikik
≦∑∑
i k
ika ξ ====∑ ∑
k a ]
ik
[ξ
k
k
i
≦nAnAnAnA∑
k
kξ ====
∞mAAAA
1xxxx ;;;;
AxAxAxAx
2
=
∑∑
iiii kkkk
2
[
ξa
kkkkikikikik
≦ ∑ ∑
==== nAAAA 2xxxx ≦nAnAnAnA====
k
i
ika
ξ ==== ∑ ∑
[ ξ
k
a
2
2]
k
2
]
i
k
∞mAAAA
2xxxx ....
8.8.8.8. 非负性与齐次性是显然的,,,, 我们先证三角不等式和相容性成立.... AAAA=(=(=(=(aaaaij),),),), BBBB=(=(=(=(bbbbij))))∈CCCC nm× ,,,,
CCCC=(=(=(=(ccccst))))∈CCCC ln× 且 AAAA====
MBBBBAAAA+
ba + ≦max{m ,n }(AAAA+BBBB)
ij
≦max{m ,n }
=max{m,n}
ba +
ij
ij
max
ji
,
.... 则
,,,, BBBB====
,,,, CCCC====
a
ij
a
ij
)
max
ji
,
max
ji
,
ij
c
max
st
ts
,
(max
ji
,
M BBBBAAAA +
, ∑
{max
ti
(Minkowski
(Minkowski 不等式))))
(Minkowski
(Minkowski
ca
kt
ik
}
;
M
k
M CCCCAAAA
M
....
下证与相应的向量范数的相容性....
=max{m ,n }AAAA+max{m ,n }BBBB=
=max{mmmm,,,,llll}}}} ∑
=max{
=max{
MACACACAC =max{
max
ti
,
ca
ik
kt
≦max{max{max{max{mmmm,,,,nnnn}}}}
≦max{max{max{max{mmmm,,,,nnnn}}}}
∑
=max{mmmm,,,,nnnn}}}}nACnACnACnAC≦max{max{max{max{mmmm,,,,nnnn}max{
}max{nnnn,,,,llll}}}}ACACACAC====
=max{
}max{
=max{
}max{
=max{
{max
ti
,
∑
c
kt
}
k
k
⋅
2
2
k
a
ik
max {{{{ kξ },},},}, 则有
2
∈
设 xxxx====
CCCC n,,,, dddd====
T
n⋯
),,,(
ξξ
ξ
1
≦∑∑
kξ ≦max{max{max{max{mmmm,,,,nnnn}}}}AAAA∑
ika ξ ====∑ ∑
kξ ====
∑∑=
kkkkikikikikaaaa
ξξξξ
knaξ ====nAnAnAnA∑
(ξ
iiii kkkk
i k
k
k
k
i
k a )
ik
k
k
AxAxAxAx
1
≦ ∑
k
M xxxxAAAA
1
;;;;
6
2
2AxAxAxAx ==== ∑ ∑
kika
ξ ≦ ∑ ∑
(
ika
ξ ≦ ∑ ∑ ∑
2 ξ
k
ika
2)
(
k
2
)
lder
(H(H(H(Hölder
lder 不等式))))
lder
i
k
i
k
i
k
k
∑∑ ⋅
ika
2
====
AxAxAxAx
∞ =
i k
nnnn
{max
iiii
∑
kkkk
1
=
ξa ≦
kkkkikikikik
}
∑
k
2
k
ξ ≦ mnAAAA 2xxxx ≦max{max{max{max{mmmm,,,,nnnn}}}}AAAA 2xxxx ====
2 ∑
∑ ⋅
ξ ≦
k
{max
a
ik
a
ik
{max
}
∑
n
i
k
k
i
k
1
=
M xxxxAAAA
2
;;;;
2
ξ ≦
k
}
max{
i
na
2 nd
2
⋅
}
====nADnADnADnAD≦max{max{max{max{mmmm,,,,nnnn}}}}ADADADAD====
∞xxxxAAAAM
....
9.9.9.9. 只证范数的相容性公理及与向量 2222–范数的相容性.... 设 AAAA=(=(=(=(aaaaij))))∈CCCC nm× ,,,, BBBB=(=(=(=(bbbbst))))∈CCCC ln× ,,,,
xxxx====
T
n⋯
),,,(
ξ
ξξ
1
2
CCCC n且 AAAA====
∈
max
ji
,
a
ij
,,,, BBBB====
max
ts
,
b
st
,,,, 则
ABABABAB
G
=
ml
max
llllttttmmmmiiii
1
1,
≤≤
≤≤
ba
ktktktkt
ikikikik
≦
ml ∑
{max
ti
,
k
ba
kt
ik
}
∑
k
bnl
)
b
kt
2
}
(Minkowski
(Minkowski 不等式))))
(Minkowski
(Minkowski
====
G BBBBAAAA
G
....
nnnn
∑
kkkk
1
=
a
ik
2
∑ ⋅
k
amn
)(
2
≦
ml
{max
ti
,
≦ mlnnnnabababab====
(
nnnn
mmmm
∑∑
iiii
1
=
kkkk
1
=
(
i
≦ ∑ ∑
≦ ∑
====
G xxxxAAAA
k
na
2
(
....
i
2
AxAxAxAx
2
=
ξa
kkkkikikikik
≦ ∑ ∑
(
i
k
ika
ξ
k
2)
ika
2
∑⋅
k
ξ
k
2
)
lder
(HHHHölder
lder
lder 不等式)
∑⋅
k
2
ξ ==== mnAAAA 2xxxx
)
k
10.10.10.10. 利用定理 2.122.122.122.12 得
nnnnIIIIUUUUUUUUUUUU
=
=
H
2
2
=
....
1
2
11.11.11.11.
AAAA 1− ====
1
2
1
1
−
−
−
3
4
1
2
1
1
2
0
0
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠
condcondcondcond 1((((AAAA)=)=)=)=
−AAAAAAAA
1
1
1
55
=⋅=
2
25
2
;;;;
condcondcondcond ∞ ((((AAAA)=)=)=)=
∞ AAAAAAAA
−
1
∞
=⋅=
25
10
....
12121212.设 xxxx是对应于 λ的特征向量,,,, 则 AAAA
mmmm
那么
mmmm
λ
xxxx
vvvv
= λ
mmmm
xxxxAAAAxxxx
=
mmmm
vvvv
≦
vvvv
xxxx mmmm
λ=
mmmm xxxxAAAA
vvvv
因
vvvvxxxx >0,0,0,0, 故由上式可得 mmmmλ ≦ mmmmAAAA ⇒ λ≦ mmmm
mmmmAAAA ....
xxxx
....又设
v⋅ 是 CCCC n上与矩阵范数 ⋅ 相容的向量范数,,,,
=
)(2
− AAAAIIII
λ
1.1.1.1.
2cλcλ
(
)
−
N
2.2.2.2. 令 SSSS )N( ====∑
kkkkAAAA ,,,,
)
lim
NNNN
+∞→
+
(
SSSS
(
kkkk
=
0
习习习习 题题题题 三三三三
﹤﹤﹤﹤1111 时,,,, 根据定理 3.3,3.3,3.3,3.3, AAAA为收敛矩阵....
,,,, 当
cλρ =)(
NNNN
)
====SSSS,,,, 则
lim
kkkk
+∞→
AAAA
kkkk
(
)
=
lim
kkkk
+∞→
kkkk
)
(
SSSS
(
kkkk
)
−
SSSS
(
)
=
0
....
7
反例:::: 设 AAAA )
3.3.3.3. 设 AAAA====
⎛
⎜⎜
⎝
⎛
⎜
⎜
⎝
(kkkk ====
1
k
0
7.01.0
6.03.0
⎞
⎟⎟
⎠
kkkk
0
0
⎞
⎟
⎟
⎠
,,,, 则
1
,,,, 则因 ∑+∞
kkkk k
=0
发散,,,, 故 ∑+∞
kkkk
=0
(
kkkkAAAA 发散,,,, 但
)
lim
kkkk
+∞→
AAAA
kkkk
(
)
====OOOO....
(AAAAρ ≦
)
=∞AAAA 行和范数=0.9=0.9=0.9=0.9<1,1,1,1, 根据定理 3.7,3.7,3.7,3.7,
∑∞+
kkkk
=
0
kkkk
7.01.0
6.03.0
⎛
⎜⎜
⎝
⎞
⎟⎟
⎠
=(=(=(=(IIII-AAAA)))) 1− ====
2
3
⎛
⎜⎜
⎝
74
93
....
⎞
⎟⎟
⎠
4.4.4.4. 我们用用两种方法求矩阵函数 eeee AAAA::::
相似对角化法....
i=λ
− AAAAIIII
λ
2 aλ
2
+
=
,,,,
a-a i,
当 =λ iiiiaaaa时,,,, 解方程组 (i(i(i(iaaaa-AAAA))))xxxx====0000,,,, 得解向量 pppp1=(i=(i=(i=(i,,,, 1)1)1)1) T ....
当 λ====-iiiiaaaa时,,,, 解方程组 (i(i(i(iaaaa++++AAAA))))xxxx====0000,,,, 得解向量 pppp2 =(=(=(=(-iiii,,,, 1)1)1)1) T ....令
PPPP====
i
⎛
⎜⎜
1
⎝
−
i
1
⎞
⎟⎟
⎠
,,,, 则 PPPP 1− ====
1
i2
⎛
⎜⎜
⎝
i1
i1
−
⎞
⎟⎟
⎠
⎛
,,,, 于是 eeee AAAA====PPPP
⎜⎜
⎝
i
a
0
0
⎞
⎟⎟
− a
⎠
i
PPPP 1− ====
cos
sin
a-a
⎞
⎟⎟
a
a
⎠
sin
cos
⎛
⎜⎜
⎝
....
利用待定系数法.... 设 eeee λ=(=(=(=( 2λ ++++aaaa2 ))))qqqq(((( λ)+)+)+)+rrrr(((( λ),),),), 且 rrrr(((( λ)=)=)=)=bbbb0 ++++bbbb1 λ,,,, 则由
i
abb
⎧
=
0
⎨
abb
=
⎩
0
+
−
1
i
1
i
a
e
− a
i
e
⇒bbbb0=cos=cos=cos=cosaaaa,,,, bbbb1====
1 sinsinsinsinaaaa....于是
a
1 sinsinsinsinaaaa
⎛
⎜⎜
a
⎝
a
⎞
⎟⎟
⎠
a
====
a
sin
⎞
⎟⎟
a
cos
⎠
后一求法显然比前一种方法更简便,,,, 以后我们多用待定系数法.... 设
⎛
eeee AAAA====bbbb0IIII++++bbbb1AAAA=cos=cos=cos=cosaaaa
⎜⎜
⎝
cos
sin
a
a
⎞
⎟⎟
⎠
⎛
⎜⎜
⎝
++++
−
−
1
1
....
1
=
=
sini
sini
i
i
1
0
=
−=
ffff((((λ)=cos
)=cos
)=cosλ,,,, 或 sinsinsinsinλ
)=cos
abb
a
+
⎧
0
⎨
a-abb
−
⎩
0
b
⎧
⎪
0
⎨
b
⎪⎩
1
⎛
⎜⎜
⎝
isini
0
0
isini
a
⎞
⎟⎟
⎠
i
a
sini
a
a
−
由此可得
故 ((((
i sini
siniaaaa))))AAAA====
sinisini
a2
则有
与
与
=sin=sin=sin=sinAAAA 与 ((((cosicosicosicosiaaaa))))IIII====
abb
=
⎧
0
⎨
abb
=
⎩
0
+
−
i
i
1
1
cos
cos
i
i
a
a
i
a
cos
0
=
=
b
⎧
0
⎨
b
⎩
1
cosi
⎛
⎜⎜
0
⎝
a
0
cosi
⎞
⎟⎟
a
⎠
=cos=cos=cos=cosAAAA....
5.5.5.5. 对 AAAA求得
−
−
PPPP====
⎛
⎜
⎜
⎜
⎝
1
3
3
11
⎞
⎟
01
⎟
⎟
01
⎠
根据 p69p69p69p69 方法二,,,,
,,,, PPPP 1− ====
1
6
0
0
6
⎛
⎜
⎜
⎜
⎝
−
11
33
24
⎞
⎟
⎟
⎟
⎠
,,,, PPPP 1− APAPAPAP====
1
⎛−
⎜
⎜
⎜
⎝
1
⎞
⎟
⎟
⎟
⎠
2
eeee AtAtAtAt====PPPPdiag(e
diag(e tttt− ,e,e,e,e tttt,e,e,e,e tttt2 ))))PPPP 1− ====
diag(e
diag(e
2t
e6
0
0
1
6
⎛
⎜
⎜
⎜
⎝
e4
2
tttt
−
e3
tttt
e3
tttt
−
tttt
tttt
e3
e
−
e3
tttt
+
−
e3
−
−
tttt
8
e2
2
tttt
−
e3
tttt
e3
tttt
−
tttt
e
tttt
tttt
e3
+
e3
−
−
e3
+
tttt
−
⎞
⎟
⎟
⎟
⎠