【推荐】新冠肺炎的最新数据集和简单的可视化和预测分析
(附代码)
https://mp.weixin.qq.com/s/yii9T9S5X_TOq2ypRvfGmQ
原创 机器学习初学者 机器学习初学者 昨天
新冠肺炎现在情况怎么样了?推荐Github标星21.7K+的新冠肺炎公开数据集,并且
用代码进行简单地可视化及预测。
推荐新冠肺炎的公开数据集:
https://github.com/CSSEGISandData/COVID19
数据可视化:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
数据集能做什么?
这个数据集可以做以下分析:
全球趋势
国家(地区)增长
省份情况
美国
欧洲
亚洲
什么时候会收敛?进行预测
简单演示
世界病例增长
美国病例增长
主要国家的比较
病例预测(按照现在的速度,到7月份,全球就会有700万例了!!!)
数据来源
数据来源:
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/thelatestcoronaviruscases/
National Health Commission of the People’s Republic of China (NHC):
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0
US CDC: https://www.cdc.gov/coronavirus/2019ncov/index.html
Government of Canada: https://www.canada.ca/en/public
health/services/diseases/coronavirus.html
Australia Government Department of Health:
https://www.health.gov.au/news/coronavirusupdateataglance
European Centre for Disease Prevention and Control (ECDC):
https://www.ecdc.europa.eu/en/geographicaldistribution2019ncovcases
Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid19
Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
1Point3Arces: https://coronavirus.1point3acres.com/en
WorldoMeters: https://www.worldometers.info/coronavirus/
COVID Tracking Project: https://covidtracking.com/data. (US Testing and
Hospitalization Data. We use the maximum reported value from "Currently" and
"Cumulative" Hospitalized for our hospitalization number reported for each state.)
French Government: https://dashboard.covid19.data.gouv.fr/
COVID Live (Australia): https://www.covidlive.com.au/
Washington State Department of Health:
https://www.doh.wa.gov/emergencies/coronavirus
Maryland Department of Health: https://coronavirus.maryland.gov/
New York State Department of Health: https://health.data.ny.gov/Health/NewYork
StateStatewideCOVID19Testing/xdssu53e/data
NYC Department of Health and Mental Hygiene:
https://www1.nyc.gov/site/doh/covid/covid19data.page and
https://github.com/nychealth/coronavirusdata
Florida Department of Health Dashboard:
https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19
_Cases/FeatureServer/0 and
https://fdoh.maps.arcgis.com/apps/opsdashboard/index.html#/8d0de33f260d444c852a61
5dc7837c86
总结
本文推荐新冠肺炎的公开数据集,并把数据可视化,并对感染人数进行了预测。
数据集地址:
https://github.com/CSSEGISandData/COVID19
演示代码地址:
https://github.com/fengdu78/machine_learning_beginner/blob/master/covid19/code/coronavirus
covid19visualizationprediction.ipynb