Cabig
stde
in
adane
maheatc
73
6 ......
......
......
CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS 73
EDITORIAL BOARD
B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN,
P. SARNAK
RANDOM GRAPHS
J.L. Alperin Local representation theory
P. Koosis The logarithmic integral II
J.E. Humphreys Reflection groups and Coxeter groups
P. Wojtaszczyk Banach spaces.1or analysts
J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in harmonic analysis
J.-P. Kahane Some random series of functions, 2nd edition
H. Cohn Introduction to the construction ofclassfields
J. Lambek & P.J. Scott Introduction to higher-order categorical logic
H. Matsumura Commutative ring theory
C.B. Thomas Characteristic classes and the cohomology of/finite groups
Already published
I W.M.L. Holcombe Algebraic automata theory
2 K. Petersen Ergodic theory
3
P.T. Johnstone Stone spaces
4 W.H. Schikhof Ultrametric calculus
5
6
7
8
9
10 M. Aschbacher Finite group theory
I1
12 P. Koosis The logarithmic integral I
13 A. Pietsch Eigenvalues and s-numbers
14 S.J. Patterson An introduction to the theory of the Riemann zeta-function
15 H.J. Baues Algebraic homotopy
16 V.S. Varadarajan Introduction to harmonic analysis on semisimple Lie groups
17 W. Dicks & M. Dunwoody Groups acting on graphs
18 L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups and their applications
19 R. Fritsch & R. Piccinini Cellular structures in topology
20 H. Klingen Introductory lectures on Siegel modular forms
21
22 M.J. Collins Representations and characters of finite groups
24 H. Kunita Stochastic flows and stochastic differential equations
25
26
27 A. Frohlich & M.J. Taylor Algebraic number theory
28 K. Goebel & W.A. Kirk Topics in metric fixed point theory
29
30 D.J. Benson Representations and cohomology I
31 D.J. Benson Representations and cohomology II
32 C. Allday & V. Puppe Cohomological methods in transformation groups
33 C. Soul& et al Lectures on Arakelov geometry
34 A. Ambrosetti & G. Prodi A primer of nonlinear analysis
35
37 Y. Meyer Wavelets and operators I
38 C. Weibel An introduction to homological algebra
39 W. Bruns & J. Herzog Cohen-Macaulay rings
40 V. Snaith Explicit Brauer induction
41 G. Laumon Cohomology of Drinfield modular varieties I
42 E.B. Davies Spectral theory and differential operators
43
44
45 R. Pinsky Positive harmonicfunctions and diffusion
46 G. Tenenbaum Introduction to analytic and probabilistic number theory
47 C. Peskine An algebraic introduction to complex projectile geometry I
48 Y. Meyer & R. Coifman Wavelets and operators II
49 R. Stanley Enumerative combinatories
50
51 M. Audin Spinning tops
52 V. Jurdjevic Geometric control theory
53 H. Voelklein Groups as Galois groups
J. Le Potier Lectures on vector bundles
54
55 D. Bump Automorphic.1orms
56 G. Laumon Cohomology of Drinfeld modular varieties 11
57 D.M. Clarke & B.A. Davey Natural dualities ibr the working algebraist
59 P. Taylor Practical foundations of mathematics
60 M. Brodmann & R. Sharp Local cohomology
61
62 R. Stanley Enumerative combinatorics II
64
68 Ken-iti Sato LUvy processes and infinitely divisible distributions
71 R. Blei Anal'ysis in integer and tiactional dimensions
J.D. Dixon, M.P.F. Du Sautoy, A. Mann & D. Segal Analytic pro-p groups, 2nd edition
J. Jost & X. Li-Jost Calculus of variations
J. Palis & F. Takes Hyperbolicity, stability and chaos at homoclinic bifiarcations
J. Diestel, H. Jarchow & A. Tonge Absolutely summing operators
P. Mattila Geometry of sets and measures in euclidean spaces
1. Porteous Clifford algebras and the classical groups
Random Graphs
Second Edition
BELA BOLLOBAS
University of Memphis
and
Trinity College, Cambridge
CAMBRIDGE
UNIVERSITY PRESS
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom
CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, VIC 3166, Australia
Ruiz de Alarc6n 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
© Cambridge University Press 2001
This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press
First published 1985 by Academic Press
Second edition published 2001 by Cambridge University Press
Printed in the United Kingdom at the University Press, Cambridge
Typeface Times 1/14pt System LATEX2e
[UPH]
A catalogue record Jor this book is available from the British Library
Library of Congress Cataloguing in Publication data
Bollob~s, Bela
Random graphs / BMla Bollobis. - 2nd ed.
p. cm. - (Cambridge mathematical library)
Includes bibliographical references and index.
ISBN 0 521 79722 5 (pbk.)
1. Random graphs. 1. Title II. Series
QA166.17.B66 2001
511.'5-dc2l
00-068952
IBSN 0 521 80920 7 hardback
ISBN 0 521 79722 5 paperback
To Gabriella and Mark
'I learn so as to be contented.'
After the inscription on 'Tsukubai', the stone wash-basin in Ryoanji
temple.
Contents
Probability Theoretic Preliminaries
Notation and Basic Facts
Some Basic Distributions
Preface
Notation
1
1.1
1.2
1.3 Normal Approximation
1.4
1.5
2
2.1
2.2
2.3
2.4
Inequalities
Convergence in Distribution
Models of Random Graphs
The Basic Models
Properties of Almost All Graphs
Large Subsets of Vertices
Random Regular Graphs
3
3.1
3.2
3.3
3.4
3.5
The Degree Sequence
The Distribution of an Element of the Degree Sequence
Almost Determined Degrees
The Shape of the Degree Sequence
Jumps and Repeated Values
Fast Algorithms for the Graph Isomorphism Problem
Small Subgraphs
Strictly Balanced Graphs
4
4.1
4.2 Arbitrary Subgraphs
4.3
Poisson Approximation
5
5.1
5.2
The Evolution of Random Graphs-Sparse Components
Trees of Given Sizes As Components
The Number of Vertices on Tree Components
vii
page xi
xvii
1
1
5
9
15
25
34
34
43
46
50
60
60
65
69
72
74
78
79
85
91
96
96
102