发送预编码与波束赋型
作者:爱吃丸子的飞飞乖
时间:2019.1.5
欢迎转载,转载请注明出处
1) 发送预编码
在阅读 MIMO 文章中经常会看到传输预编码矩阵(Transmission Precoding Matrix,TPM),
传输预编码向量(Transmission Precoding Vector,TPV),传输预编码(Transmission Precoding),
基站处的波束赋型向量(beamforming vector at the BS),这些都指的是发送预编码。另一方
面,在网上、中文论文中、通信专业书籍中有波束赋型,波束成形,波束赋形,波束成型等
描述,这么多称呼叫人混淆,我认为都是一个意思,即 beamforming,其实质也可以理解为
发送预编码。在这里我引用杨学志老师的翻译名称——波束赋型,具体书(通信之道)中的讲
述如下:
我们从 SVD 分解讲起,信道矩阵的秩就是能够同时发送的数据的个数,每一个数据叫
作一个流(stream),也叫作一个层(layer),每个流可以单独进行编码调制。
为了控制流的个数,采用一个编码矩阵 对流数据进行编码,MIMO 方程变为
(1)
如果信道矩阵的秩是 ,那么可以同时发送 个信息数据,所以,信息数据 的维数是
。这个数据被编码矩阵 进行编码, 的维度是
;编码后得到 跟发射天线上的
发射数据。 的理想选择是信道矩阵
经过
(奇异值分解,
)后
矩阵当中最大的前 个奇异值对应的列组成的矩阵,从这个角度来看,预编码最原始的
目的是 1、为了使发射数据与天线数目相匹配;2、降低接收机解码的难度(因为酉矩阵具有
正交性)。接下来,会以发送端为均匀线性阵列(uniform linear array)为例,具体说明这个最原
本的预编码矩阵
。
2) 发送预编码与波束赋型(利用 UPA 天线发射举例)
C111nnmmrrnrHCsnrrs1rCCmrmCnmHSVDHnmnnnmmmHUVmmVrmrCd均匀线性阵列
均匀线性阵列(ULA)如上图所示,其天线之间的间距为 d。当天线间距 d 大于等于半波
长时,可认为两条信道之间是相互独立的(两条信道相关性大的概率很低)。
如果与之通信的终端与天线阵列之间的距离远远大于 d,则可以认为电磁波是平行波,
这叫远场假设。电磁波的方向与天线阵列的夹角记为 ,也称波达方向(AOD,离开角度)。
另一个假设叫作窄带假设,也就是信号的带宽远远小于载波频率。从上图中可清楚看书,
在波达方向上,相邻天线之间的传播路径的差为
,如果窄带假设成立,那么相当于相
位变化了
。如果采用第一根天线的信道响应作为基准,也就是假定为 1,那么第
m 跟天线的信道响应为
,相位上取负号的意思是第一根天线的传播距离最长。
假设阵列共有 M 根天线,把信道响应排列成一个矢量:
(2)
在智能天线领域把这个矢量叫作导向矢量(steering vector)。导向矢量与信道矩阵有密
切的关系,考虑下行信道,基站(UPA)向用户发射消息,下行信道矩阵为
,其中 为
第一阵元的信道响应(若接收为多天线用户,则 为列向量,若接收为单天线用户,则 为
一标量)。现在让我们忽略 ,则下行的信道矩阵为
,这是一个维数为
的行
矢量。因为只有一行,所以秩为 1.如果进行 SVD 分解:
则只有一个不为零的奇异值,所以
(3)
(4)
矩阵是一个标量,也就是 1。 矩阵的维数为
,且第一行就是
归一化后的
矢量,即
(5)
矩阵的行矢量要满足归一化要求,也就是要求其长度为 1(保证编码后功率保持不变),从
而可以得出
。 的其他行取与
正交就可以了,具体是什么我们不感兴趣,因
为在做矩阵乘法的实际被零奇异值消掉了。
前面说过,最好的预编码矩阵就是矩阵 当中那些奇异值不为零的列构成的矩阵。根据这个
结论,在预编码矩阵应该是
sin()d2sin()d2(1)sin()jmd22sin()(1)sin()()[1,,]jdjMdTaee,1()Tha1h1h1h1h()THa1MHHUV[,0,,0]UHVMM()Ta1()THaVHVMHV()aC
(6)
“*”表示共轭的意思。这种预编码又叫作波束赋型,即每个天线上施加一个权重因子,其
取值即为
向量中的各个分量。这样一来,终端的接收信号为
(7)
也就是说,终端接收信号的幅度是单天线信号的
倍,也就是功率的 倍,信噪比的
倍。这个增益被叫作波束赋型增益,或者阵列增益。
对于一组固定的加权因子,也就是预编码矩阵 ,
是 的函数,称作方向
图。改变加权因子,可以使得波束指向其他的方向。即做到波束被赋型。
总结来看,波束赋型技术就是用预编码技术实现。
另一方面,我再论文中还会遇到很多其它预编码方式:迫零预编码(ZF, Zero-Forcing)、
最小均方误差(MMSE, minimum mean square error)预编码、维纳滤波(WF,Wiener filter)预编
码等。他们的目的都是消除用户与用户(波束与波束) 之间的干扰。故在不同波束(波束内有
用户)进行预编码。我这些预编码方式也可称作波束赋型(beamforming)。
3) 接收成形(receiver shaping)
前面有提到降低接收机解码难度,接收成形技术就是设计接收机,用各种接收成形算法
(ZF/MMSE)将原本基站想发射的信号,从接收的信号中求解出来。
*1()CaM*1()CaM*1()()TrHCsnaasnMsnMMMMC()THCaC