5ŧ-ކA^6©‰Y
Dean
—————————————————————————-
V¡‹<
#¥
···
—————————————————————————-
2012.12
1 ŧģ
‡Eѧ,=§ŒǑ
1. Y = {Yt : t ≥ 0}
ëêǑ lѧ…†Õ Ó©ÅCS x 1, . . . ,x n, . . .
¥ N = {Nt : t ≥ 0}
ƒÕ .b µ = Ex 1,s 2 = D(x 1)Ñk,ŽEѧ Yƒê RY (s,t)Æ
ê CY (s,t).
ÄkŠê mY (t) ê DY (t).5¿
x k, Y0 = 0
Yt =
k=1
Nt
P{Nt = n}
n
ix
i=1
n=0n(µ2 + s 2) + (n2 − n)µ2
(l t)n
n!
e−l t
E(Y 2
=
=
mY (t) =
n=0
k=1
n!
=
n=0
n!
n
n=1
k=1
k=1
n
ix
n=0
k=1
n=0
i=1
j=1
E(x
ix
j)
E(x 2
i ) +
x k!2
i, j=1
e−l t =
E(x k)
(l t)n
n!
e−l t = l µt,
Nt = n
(l t)n
e−l t
n!
Nt = n# (l t)n
E" Nt
x k
e−l t =
x k!2
t ) = E
E
Nt
E
n
Nt
j# P{Nt = n} =
E" n
j)! (l t)n
n=0 n
n
E(x
i6= j
= s 2l t + µ2(l t)2 + l t.
Ïd
2ƒêÆ ê.Œ±y² YǑ²Õ §,
„/
?
t − mY (t)2 = l (s 2 + µ2)t.
RY (s,t) = l (s 2 + µ2)(s∧ t) + l 2µ2st.
mY (t) = l µt,
DY (t) = EY 2
RY (s,t) = E[Ys(Yt −Ys +Ys)]
s ) + EYsE(Yt −Ys)
s≤t
= E(Y 2
= DY (s) + mY (s)2 + mY (s)mY (t − s) = l (s 2 + µ2)s + l 2s2µ2 + l sµl (t − s)µ
= l (s 2 + µ2)s + l 2µ2st.
CY (s,t) = RY (s,t)− mY (s)mY (t) = l (s 2 + µ2)(s∧ t).
1
¥
¥
¥
¥
x
¥
¥
¥
· 2·
t ≥ 0.
.
...
...
,
Yt = µt + s Wt ,
,Ï
(Ws1, . . .,Wsn) = (Ws1 −W0,Ws2 −Ws1, . . . ,Wsn −Wsn−1)
1 1 1··· 1 1
0 1 1··· 1 1
0 0 1··· 1 1
...
...
...
...
0 0 0··· 1 1
0 0 0··· 0 1
ŧģ
2. W = {Wt : t ≥ 0}
Ä.?~ê µ ∈ R,s > 0, Â
Ǒ (µ,s 2)- Ä.y²§ d§,¿Ñ (Yt1, . . . ,Ytn)Š
¡ Y = {Yt : t ≥ 0}
Æ ,¥ 0 < t1 < ··· < tn < ¥
Äk`² Ä WǑd§. ∀ 0 ≤ s0 < s1 < ··· < sn < ¥
d Ä Â9C†5Ÿ (P.14) WǑd§.gy² YǑd
§.Ï
2g^C†5Ÿ YǑd§.w
Æ CCC = (ci j)n×n,¥ ci j = s 2(ti ∧ t j), ¤
5. x h ‡ƒÕ ÅC,¥ xVÇê
h ∼ U [0, 2p ].y²Å§
E(Yt1, . . . ,Ytn) = (EYt1, . . . , EYtn) = (t1µ, . . .,tnµ),
Cov(Yti,Yt j) = s 2E(WtiWt j) = s 2(ti ∧ t j),
t1
t2
t3
...
t1 t1 t1 ···
t1 t2 t2 ···
t1 t2 t3 ···
...
...
...
t1 t2
t1 t2
t1
t2
t3
...
...
t3 ··· tn−1 tn−1
t3 ··· tn−1 tn
(Ys1, . . . ,Ysn) = s (Ws1, . . .,Wsn) + (µs1, . . . , µsn),
fx (x) = 2x3e−x4/21(0,¥ )(x),
CCC = s 2
.
Xt := x 2 cos(2p t + h ),
t ≥ 0
· 3·
d
dx
√x
d
dx Z
0
P{x 2 ≤ x} =
2t3e−t4/2dt = xe−x2/2,
x > 0,
, X2 = x 2 sinh
Xt = (X1, X2)(cos(2p t),−sin(2p t))T .
(Xt1, . . ., Xtn) = (X1, X2) cos(2p t1)
cos(2p t2) ··· cos(2p tn)
−sin(2p t1) −sin(2p t2) ··· −sin(2p tn)! ,
ŧģ
‡§,¿ŽŠêÆ ê.
Ï
x 2Ñ ëêǑ s 2 = 1 Rayleigh© (P.31). X1 = x 2 cosh
,
d~ 2.2.5 (X1, X2)Ñ ©, XtÑ ©.?é? Óž
t1, . . . ,tn ∈ [0,¥ )
(Xt1, . . ., Xtn)Ñ n©,ùÒy² XǑ§.
Ïd
∀ s,t ∈ [0,¥ ),dÕ 5
6.Ž Ä W©ê9VÇê.
∀ 0 ≤ s < t,w (Xs, Xt)Ñ ©,ŠǑ µµµ = (0, 0),Æ Ǒ
VÇê (P.14)Ǒ
mX (t) = E[x 2 cos(2p t + h )] = E(x 2)Ecos(2p t + h ) = 0,
RX (s,t) = E(x 4)E[cos(2p s + h ) cos(2p t + h )] = 2·
CX (s,t) = RX (s,t)− mX(s)mX(t) = cos[2p (t − s)].
Ecos(2p t + h ) =Z 2p
E[cos(2p s + h ) cos(2p t + h )] =Z 2p
E(x 4) =Z
−¥
cos[2p (t − s)] = cos[2p (t − s)],
t! , CCC−1 =
cos(2p s + u) cos(2p t + u)
cos[2p (t − s)],
1
2p du = 0,
CCC = s
s
x4 fx (x)dx = 2.
1
2p du =
1
2
cos(2p t + u)
1
2
0
0
s
1
1
2
s ! .
−s
st − s2 t
−s
(xxx− µµµ)CCC−1(xxx− µµµ)T
s ! (x1, x2)T)
(x1, x2) t
−s
2(st − s2)
−s
x2
1t + x2
2s− 2x1x2s
,
2(st − s2)
1
f (x1, x2)) =
=
=
1
1
(2p )n/2|CCC|1/2 exp−
exp(−
2p √st − s2
exp−
2p √st − s2
1
¥
· 4·
F(x, y) =
f (x1, x2)dx1dx2.
ŧģ
©êǑ
9. N = {Nt : t ≥ 0}
‡ëêǑ l > 0ѧ.é ~ê l > 0 Â#§
Šê mZ(l)ƒê RZ(l)(s,t)9ƒê RN,Z(l)(s,t).
Ž Z(l) = {Z(l)
Äkѧƒê. s < t,dÕ 59Ñ© k
„/
2 Z(l)Šê†ƒê.w
RN(s,t) = E[(Nt − Ns + Ns)Ns] = ENsE(Nt − Ns) + E(N2
RN(s,t) = l (s∧ t) + l 2st.
Z(l)
t = Nt+l − Nt,
s ) = l sl (t − s) + l s + (l s)2 = l s + l 2st.
x
y
Z
−¥
Z
−¥
t
: t ≥ 0}
t ≥ 0.
mZ(t) = E(Nt+l − Nt ) = l (t + l)− l t = l l;
RN,Z(l)(s,t) = E[Ns(Nt+l − Nt)] = RN(s,t + l)− RN(s,t)
= l 2s(t + l) + l [s∧ (t + l)]− [l 2st + l (s∧ t)] = l 2sl + l [s∧ (t + l)− s∧ t];
RZ(l)(s,t) = E[Ns+lNt+l − NtNs+l − NsNt+l + NsNt ]
= RN(s + l,t + l)− RN(t, s + l)− RN(s,t + l) + RN(s,t)
= l 2l2 + l [(s + l)∧ (t + l)− t ∧ (s + l)− s∧ (t + l) + s∧ t].
i)
ii)
iii)
−W0 = −0 = 0.
−(Wt1 −Wt0),−(Wt2 −Wt1), . . . ,−(Wtn −Wtn−1).
1 Ä
1.y Ä Wé¡5,gƒ5ž_=5.
y? 0 ≤ t0 < t1 < ··· < tn−1 < tn < ¥9 t ≥ 0.
−WǑ Ä.
(1)é¡5=y
("Š)w
(²Õ ) −WSǑ
Ï Wtk − Wtk−1 ∼ N(0,tk − tk−1),
−(Wtk − Wtk−1) ∼ N(0,tk − tk−1),=
−W÷v
²5. Wt1 − Wt0,Wt2 − Wt1, . . . ,Wtn − Wtn−1
ƒÕ ,
−WǑ÷vÕ 5.
Wt1), . . .,−(Wtn −Wtn−1)ǑwƒÕ , `²
()w
Œ, −WǑ Ä.
(2)gƒ5=y
∀ t, a > 0,k Wat
Ï Wat ∼ N(0, at),d©5Ÿ √aWt ∼ N(0, at), Wat
(3)ž_=5=yé T > 0,§ B = {Bt = WT −WT−t : 0 ≤ t ≤ T}
Ä.
("Š)w B0 = WT −WT = 0.
(²Õ ) Btk − Btk−1 = WT−tk−1 −WT−tk, k = 1, . . ., n,tn ≤ T , BSǑ
w 0 ≤ T − tn < T − tn−1 < ··· < T − t1 < T − t0 ≤ T ,a (1)¥ ii)? é
BÕ 5.
()d W Â WT −WT−t ∼ N(0,t),= Bt ∼ N(0,t).
Œ, BǑ Ä.
t ),¥ t > 0, mǑê.
2.Ž Ä W m E(W m
WT−t0 −WT−t1,WT−t1 −WT−t2, . . .,WT−tn−1 −WT−tn.
−(Wt1 − Wt0),−(Wt2 −
i)
ii)
iii)
−Wt ∼ N(0,t).
= √aWt.
d
= √aWt.
d
5
0,
k=0
t ≥ 0.
· 6·
E(W m
Ck
k=0
E[W 4
t −W 4
E[W 3
t −W 3
Cm−k
m xm−kµk.
s − 6(t − s)W 2
s − 3(tWt − sWs)]
kǑóê;
kǑê.
µk := E[(Wt − x)k] =((k− 1)!!tk/2,
mxm−k(Wt − x)k# =
t ) = E" m
m
Ä
WŠ W0 = x,Ï Wt ∼ N(x,t),d P.13
3. W ‡ Ä, ∀ s < t,
dÏ"‚55Ÿ ªÑǑ 0.
6. W ‡ Ä,é t0 > 0, Â
y² W 0 = {W 0
ǑǑ Ä.
©
("Š)Ï W 0
0 = Wt0 −Wt0 = 0, W 0ŠǑ 0.
(²Õ ) ∀ 0 ≤ s0 < s1 < ··· < sn < ¥
,d W²5k
W 0 ²§.d W Õ §S
ƒÕ ,
ƒÕ ,= W 0÷vÕ 5.
()Ï W 0
si−1 = Wsi+t0 −Wsi−1+t0 ∼ N(0, si − si−1),
W 0
t = Wt+t0 −Wt0,
s − 3(t − s)2].
W 0
s1 −W 0
t = Wt+t0 −Wt0 ∼ N(0,t),=§ W 0© .
sn −W 0
sn−1
sn−1 −W 0
sn−2,W 0
s1, . . .,W 0
s2 −W 0
s0,W 0
W 0
si −W 0
t
: t ≥ 0}
i = 1, . . . , n,
(1)
(2)
(3)
Ws1+t0 −Ws0+t0,Ws2+t0 −Ws1+t0, . . .,Wsn−1+t0 −Wsn−2+t0,Wsn+t0 −Wsn−1+t0