logo资料库

Introduction to Graph Theory.pdf

第1页 / 共871页
第2页 / 共871页
第3页 / 共871页
第4页 / 共871页
第5页 / 共871页
第6页 / 共871页
第7页 / 共871页
第8页 / 共871页
资料共871页,剩余部分请下载后查看
COVER
CONTENTS
Preface
CH.1-Fundamental Concepts
1.1 What is a Graph?
1.2 Paths, Cycles, and Trails
1.3 Vertex Degrees and Counting
1.4 Directed Graphs
CH.2-Trees and Distance
2.1 Basic Properties
2.2 Spanning Trees and Enumeration
2.3 Optimization and Trees
CH.3-Matchings and Factors
3.1 Matchings and Covers
3.2 Algorithms and Applications
3.3 Matchings in General Graphs
CH.4-Connectivity and Paths
4.1 Cuts and Connectivity
4.2 k-Connected Graphs
4.3 Network Flow Problems
CH.5-Coloring of Graphs
5.1 Vertex Coloring and Upper Bounds
5.2 Structure of k-chromatic Graphs
5.3 Enumerative Aspects
CH.6-Planar Graphs
6.1 Embeddings and Euler's Formula
6.2 Characterization of Planar Graphs
6.3 Parameters of Planarity
CH.7-Edges and Cycles
7.1 Line Graphs and Edge-coloring
7.2 Hamiltonian Cycles
7.3 Planarity, Colorings, and Cycles
CH.8-Additional Topics
8.1 Perfect Graphs
8.2 Matroids
8.3 Ramsey Theory
8.4 More Extremal Problems
8.5 Random Graphs
8.6 Eigenvalues of Graphs
Appendix A: Mathematical Background
Appendix B: Optimization and Complexity
Appendix C: Hints for Selected Exercises
Appendix D: Glossary of Terms
Appendix E: Supplemetal Reading
Appendix F: References
Author Index
Subject Index
Solution Manual
CH.1
CH.2
CH.3
CH.4
CH.5
CH.6
CH.7
CH.8
分享到:
收藏