logo资料库

LDO手册LDO学习必备.pdf

第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
资料共30页,剩余部分请下载后查看
dropout voltage
quiescent & ground current
LDO topology
efficiency
load regulation
line regulation
transient response
frequency response
ESR
Technical Review of Low Dropout Voltage Regulator Operation and Performance Application Report August 1999 Mixed Signal Products SLVA072
IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright  1999, Texas Instruments Incorporated
1 Dropout Voltage 1.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents 2 Quiescent Current or Ground Current 2.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 LDO Topologies 3.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Efficiency 4.1 Application Implications—An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Load Regulation 5.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Line Regulation 6.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Transient Response 7.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1 4 5 6 7 9 9 9 10 11 12 13 14 14 18 20 20 20 22 22 23 9 Range of Stable ESR (Tunnel of Death) 9.1 Application Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Accuracy 10.1 Reference Voltage Drift 10.2 Error Amplifier Voltage Drift 10.3 Tolerance of External Sampling Resistors 10.4 Application Implications—an Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Technical Review of Low Dropout Voltage Regulator Operation and Performance iii
Figures List of Figures 1. LDO Voltage Regulator 2. Series Pass Element I-V Characteristic and LDO Equivalent Circuits 3. NMOS Operation With LDO in Saturation Region 4. NMOS Operation With LDO in Dropout Region 5. Typical Input/Output Voltage Characteristics of a Linear Regulator 6. Dropout Region of TI TPS76333 (3.3-V LDO) 7. I-V Characteristic of Bipolar Transistors 8. I-V Characteristic of MOS Transistors 9. Quiescent Current and Output Current 10. Linear Regulator 11. Pass Element Structures 12. PMOS Voltage Regulator 13. Load Transient Response of TPS76350 14. TPS76350 Output Voltage With Respect to Output Current 15. Line Transient Response of TPS76333 16. TPS76333 Output Voltage With Respect to Input Voltage 17. 1.2-V, 100-mA LDO Voltage Regulator With Output Capacitor of 4.7 m F 18. Transient Response of Step Load Change of 1.2-V, 100-mA LDO Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 3 4 4 5 6 6 7 7 10 11 11 13 13 14 With an Output Capacitor Co=4.7 m F 19. AC Model of a Linear Regulator 20. Frequency Response of the LDO Voltage Regulator 21. LDO Frequency Response Without Compensation 22. LDO Frequency Response With External Compensation 23. Unstable Frequency Response of LDO With too High ESR 24. Unstable Frequency Response of LDO With too Low ESR 25. Range of Stable ESR Values 26. LDO With Reference Voltage Drift 27. LDO With Error Amplifier Voltage Drift 28. LDO With Sampling Resistors 29. LDO Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 16 17 18 18 19 19 20 21 22 23 24 1 Comparison of Pass Element Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 List of Tables iv SLVA072
Technical Review of Low Dropout Voltage Regulator Operation and Performance Bang S. Lee ABSTRACT This application report provides a technical review of low dropout (LDO) voltage regulators, and describes fundamental concepts including dropout voltage, quiescent current, and topologies. The report also includes detailed discussions of load/line regulation, efficiency, frequency response, range of stable ESR, and accuracy of LDO voltage regulators. 1 Dropout Voltage Dropout voltage is the input-to-output differential voltage at which the circuit ceases to regulate against further reductions in input voltage; this point occurs when the input voltage approaches the output voltage. Figure 1 shows an example of a simple NMOS low dropout (LDO) voltage regulator. Series Pass Element _ Vds + + Vi _ S D G Control Circuit Id RO + VO _ Figure 1. LDO Voltage Regulator LDO operation can be explained using the NMOS series pass element I-V characteristics shown in Figure 2. NMOS devices are not widely used in LDO designs, but they simplify the explanation of LDO performance. Figure 2 (a) shows the two regions of operation—linear and saturation. In the linear region, the series pass element acts like a series resistor. In the saturation region, the device becomes a voltage-controlled current source. Voltage regulators usually operate in the saturation region. 1
Dropout Voltage Linear Region Saturation Region Id (Operation Like a Resistor) (Operation Like a Current Source) Slope = Ri Vgs5 Vgs4 Vgs3 Vgs2 Vgs1 0 Vds(sat) Vds = VI – VO (a) I-V Characteristic of n-channel MOSFET Series Pass Element + VI _ S D Ri Id RO + VO _ Series Pass Element Rds b V2 gs S G + _ Vgs Id D RO + VO _ + VI _ (b) LDO Equivalent Circuit in The Linear Region (c) LDO Equivalent Circuit in The Saturation Region Figure 2. Series Pass Element I-V Characteristic and LDO Equivalent Circuits Figures 2 (b) and (c) show the LDO equivalent circuits for the two operating regions. The control circuit is not shown. Figure 2 (c) shows the LDO equivalent circuit in the saturation region (assume threshold voltage is zero). There is a constant current source between the drain and source, which is a function of gate-to-source voltage, Vgs. The drain current (load current) is given by Id + bV2 gs Where b is a current gain. From equation (1), the series pass element acts like a constant current source in the saturation region in terms of gate-to-source voltage. Under varying load conditions, Vgs controls the LDO regulator to supply the demand output load. Figure 3 illustrates the LDO operation in the saturation region. When load current increases from Id2 to Id3, the operating point moves from Po to P2, and the input-to-output voltage differential, Vds, is given by Vds + VI* VO 2 SLVA072 (1) (2)
From equation (2) and Figure 3, as the input voltage decreases, the voltage regulator pushes the operating point toward P1 (toward the dropout region). As the input voltage nears the output voltage, a critical point exists at which the voltage regulator can not maintain a regulated output. The point at which the LDO circuit begins to lose loop control is called the dropout voltage. Below the dropout voltage, the LDO regulator can no longer regulate the output. Dropout Voltage Ids Id3 Id2 Id1 P2 P1 P0 Operation Within Regulation Vgs4 Vgs3 Vgs2 Vgs1 Vgs Vgs3Vgs2 Vgs1 0 Vds1 Vds0 Vds2 Vds = VI – VO V(Dropout) Figure 3. NMOS Operation With LDO in Saturation Region IO Linear Region Ri(min) Operation Within Regulation P2 P1 P3 Ri(max) Pto Vgs7 Vgs6 Vgs5 Vgs4 Vgs3 Vgs2 Vgs1 V3 V2 V1 Vds = VI – VO IO1 0 Figure 4. NMOS Operation With LDO in Dropout Region In the dropout region, the series pass element limits the load current like a resistor—as shown in Figure 2 (b). Figure 4 shows NMOS operation with the LDO regulator in the dropout region and decreasing input voltage. The equivalent resistors Ri(max) and Ri(min) are the maximum and minimum values respectively of the series pass element in the linear region. When the input voltage decreases to near the output voltage, the operating point P1 moves to the operating point P2 that is the minimum regulating point at the specific load condition (Io1) (i.e., dropout voltage). Within the dropout region, Vgs is not a function of the control loop, but of the input voltage. In other words, the regulator control loop cut off and Vgs begins to depend on the decreasing input voltage. Thus when the input Technical Review of Low Dropout Voltage Regulator Operation and Performance 3 b
Dropout Voltage voltage decreases further, the control voltage (Vgs) also decreases in proportion to the decreasing input voltage. The operating point moves down to P3 from P2. Finally, the regulator reaches the turnoff point, Pto. [V] Off Region Dropout Region VI VO Regulation Region Vds V(dropout) Figure 5. Typical Input/Output Voltage Characteristics of a Linear Regulator Figure 5 shows the dropout region in relation to the off and regulation regions. Below V(dropout) , the output voltage drops with decreasing input voltage. 1.1 Application Implications In dropout region, the magnitude of the dropout voltage depends on the load current and the on resistance (Ron) of the series pass element. It is given by Vdo + ILoadRon (3) Throughout the dropout region, the output voltage is not maintained any more by the control loop since the control loop is electrically disconnected at the output of the controller (Figure 1) and then the pass device acts like a resistor. Therefore, the output voltage can be pulled down to ground by the load. Figure 6 shows the input-output characteristics of the TPS76333 3.3-V LDO regulator. The dropout voltage of the TPS76333 is typically 300 mV at 150 mA. The LDO regulator begins dropping out at 3.6-V input voltage; the range of the dropout region is between 3.6 V and 2.0 V input voltage. Dropout Region 3.3 Off Region Regulation Region V – e g a t l o V t u p t u O – O V 0 2.0 3.6 10 VI – input voltage – V Figure 6. Dropout Region of TI TPS76333 (3.3-V LDO) 4 SLVA072
分享到:
收藏