logo资料库

The Princeton Companion To Mathematics.pdf

第1页 / 共1057页
第2页 / 共1057页
第3页 / 共1057页
第4页 / 共1057页
第5页 / 共1057页
第6页 / 共1057页
第7页 / 共1057页
第8页 / 共1057页
资料共1057页,剩余部分请下载后查看
The Princeton Companion to Mathematics
Contents
Preface
Contributors
Part I Introduction
I.1 What Is Mathematics About?
I.2 The Language and Grammar of Mathematics
I.3 Some Fundamental Mathematical Definitions
I.4 The General Goals of Mathematical Research
Part II The Origins of Modern Mathematics
II.1 From Numbers to Number Systems
II.2 Geometry
II.3 The Development of Abstract Algebra
II.4 Algorithms
II.5 The Development of Rigor in Mathematical Analysis
II.6 The Development of the Idea of Proof
II.7 The Crisis in the Foundations of Mathematics
Part III Mathematical Concepts
III.1 The Axiom of Choice
III.2 The Axiom of Determinacy
III.3 Bayesian Analysis
III.4 Braid Groups
III.5 Buildings
III.6 Calabi–Yau Manifolds
III.7 Cardinals
III.8 Categories
III.9 Compactness and Compactification
III.10 Computational Complexity Classes
III.11 Countable and Uncountable Sets
III.12 C*-Algebras
III.13 Curvature
III.14 Designs
III.15 Determinants
III.16 Differential Forms and Integration
III.17 Dimension
III.18 Distributions
III.19 Duality
III.20 Dynamical Systems and Chaos
III.21 Elliptic Curves
III.22 The Euclidean Algorithm and Continued Fractions
III.23 The Euler and Navier–Stokes Equations
III.24 Expanders
III.25 The Exponential and Logarithmic Functions
III.26 The Fast Fourier Transform
III.27 The Fourier Transform
III.28 Fuchsian Groups
III.29 Function Spaces
III.30 Galois Groups
III.31 The Gamma Function
III.32 Generating Functions
III.33 Genus
III.34 Graphs
III.35 Hamiltonians
III.36 The Heat Equation
III.37 Hilbert Spaces
III.38 Homology and Cohomology
III.39 Homotopy Groups
III.40 The Ideal Class Group
III.41 Irrational and Transcendental Numbers
III.42 The Ising Model
III.43 Jordan Normal Form
III.44 Knot Polynomials
III.45 K-Theory
III.46 The Leech Lattice
III.47 L-Functions
III.48 Lie Theory
III.49 Linear and Nonlinear Waves and Solitons
III.50 Linear Operators and Their Properties
III.51 Local and Global in Number Theory
III.52 The Mandelbrot Set
III.53 Manifolds
III.54 Matroids
III.55 Measures
III.56 Metric Spaces
III.57 Models of Set Theory
III.58 Modular Arithmetic
III.59 Modular Forms
III.60 Moduli Spaces
III.61 The Monster Group
III.62 Normed Spaces and Banach Spaces
III.63 Number Fields
III.64 Optimization and Lagrange Multipliers
III.65 Orbifolds
III.66 Ordinals
III.67 The Peano Axioms
III.68 Permutation Groups
III.69 Phase Transitions
III.70 π
III.71 Probability Distributions
III.72 Projective Space
III.73 Quadratic Forms
III.74 Quantum Computation
III.75 Quantum Groups
III.76 Quaternions, Octonions, and Normed Division Algebras
III.77 Representations
III.78 Ricci Flow
III.79 Riemann Surfaces
III.80 The Riemann Zeta Function
III.81 Rings, Ideals, and Modules
III.82 Schemes
III.83 The Schrödinger Equation
III.84 The Simplex Algorithm
III.85 Special Functions
III.86 The Spectrum
III.87 Spherical Harmonics
III.88 Symplectic Manifolds
III.89 Tensor Products
III.90 Topological Spaces
III.91 Transforms
III.92 Trigonometric Functions
III.93 Universal Covers
III.94 Variational Methods
III.95 Varieties
III.96 Vector Bundles
III.97 Von Neumann Algebras
III.98 Wavelets
III.99 The Zermelo–Fraenkel Axioms
Part IV Branches of Mathematics
IV.1 Algebraic Numbers
IV.2 Analytic Number Theory
IV.3 Computational Number Theory
IV.4 Algebraic Geometry
IV.5 Arithmetic Geometry
IV.6 Algebraic Topology
IV.7 Differential Topology
IV.8 Moduli Spaces
IV.9 Representation Theory
IV.10 Geometric and Combinatorial Group Theory
IV.11 Harmonic Analysis
IV.12 Partial Differential Equations
IV.13 General Relativity and the Einstein Equations
IV.14 Dynamics
IV.15 Operator Algebras
IV.16 Mirror Symmetry
IV.17 Vertex Operator Algebras
IV.18 Enumerative and Algebraic Combinatorics
IV.19 Extremal and Probabilistic Combinatorics
IV.20 Computational Complexity
IV.21 Numerical Analysis
IV.22 Set Theory
IV.23 Logic and Model Theory
IV.24 Stochastic Processes
IV.25 Probabilistic Models of Critical Phenomena
IV.26 High-Dimensional Geometry and Its Probabilistic Analogues
Part V Theorems and Problems
V.1 The ABC Conjecture
V.2 The Atiyah–Singer Index Theorem
V.3 The Banach–Tarski Paradox
V.4 The Birch–Swinnerton-Dyer Conjecture
V.5 Carleson’s Theorem
V.6 The Central Limit Theorem
V.7 The Classification of Finite Simple Groups
V.8 Dirichlet’s Theorem
V.9 Ergodic Theorems
V.10 Fermat’s Last Theorem
V.11 Fixed Point Theorems
V.12 The Four-Color Theorem
V.13 The Fundamental Theorem of Algebra
V.14 The Fundamental Theorem of Arithmetic
V.15 Gödel’s Theorem
V.16 Gromov’s Polynomial-Growth Theorem
V.17 Hilbert’s Nullstellensatz
V.18 The Independence of the Continuum Hypothesis
V.19 Inequalities
V.20 The Insolubility of the Halting Problem
V.21 The Insolubility of the Quintic
V.22 Liouville’s Theorem and Roth’s Theorem
V.23 Mostow’s Strong Rigidity Theorem
V.24 The P versus NP Problem
V.25 The Poincaré Conjecture
V.26 The Prime Number Theorem and the Riemann Hypothesis
V.27 Problems and Results in Additive Number Theory
V.28 From Quadratic Reciprocity to Class Field Theory
V.29 Rational Points on Curves and the Mordell Conjecture
V.30 The Resolution of Singularities
V.31 The Riemann–Roch Theorem
V.32 The Robertson–Seymour Theorem
V.33 The Three-Body Problem
V.34 The Uniformization Theorem
V.35 The Weil Conjectures
Part VI Mathematicians
VI.1 Pythagoras (ca. 569 b.c.e.–ca. 494 b.c.e.)
VI.2 Euclid (ca. 325 b.c.e.–ca. 265 b.c.e.)
VI.3 Archimedes (ca. 287 b.c.e.–212 b.c.e.)
VI.4 Apollonius (ca. 262 b.c.e.–ca. 190 b.c.e.)
VI.5 Abu Ja’far Muhammad ibn Mūsā al-Khwārizmī (800–847)
VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170–ca. 1250)
VI.7 Girolamo Cardano (1501–1576)
VI.8 Rafael Bombelli (1526–after 1572)
VI.9 François Viète (1540–1603)
VI.10 Simon Stevin (1548–1620)
VI.11 René Descartes (1596–1650)
VI.12 Pierre Fermat (160?–1665)
VI.13 Blaise Pascal (1623–1662)
VI.14 Isaac Newton (1642–1727)
VI.15 Gottfried Wilhelm Leibniz (1646–1716)
VI.16 Brook Taylor (1685–1731)
VI.17 Christian Goldbach (1690–1764)
VI.18 The Bernoullis (.. 18th century)
VI.19 Leonhard Euler (1707–1783)
VI.20 Jean Le Rond d’Alembert (1717–1783)
VI.21 Edward Waring (ca. 1735–1798)
VI.22 Joseph Louis Lagrange (1736–1813)
VI.23 Pierre-Simon Laplace (1749–1827)
VI.24 Adrien-Marie Legendre (1752–1833)
VI.25 Jean-Baptiste Joseph Fourier (1768–1830)
VI.26 Carl Friedrich Gauss (1777–1855)
VI.27 Siméon-Denis Poisson (1781–1840)
VI.28 Bernard Bolzano (1781–1848)
VI.29 Augustin-Louis Cauchy (1789–1857)
VI.30 August Ferdinand Möbius (1790–1868)
VI.31 Nicolai Ivanovich Lobachevskii (1792–1856)
VI.32 George Green (1793–1841)
VI.33 Niels Henrik Abel (1802–1829)
VI.34 János Bolyai (1802–1860)
VI.35 Carl Gustav Jacob Jacobi (1804–1851)
VI.36 Peter Gustav Lejeune Dirichlet (1805–1859)
VI.37 William Rowan Hamilton (1805–1865)
VI.38 Augustus De Morgan (1806–1871)
VI.39 Joseph Liouville (1809–1882)
VI.40 Ernst Eduard Kummer (1810–1893)
VI.41 Évariste Galois (1811–1832)
VI.42 James Joseph Sylvester (1814–1897)
VI.43 George Boole (1815–1864)
VI.44 Karl Weierstrass (1815–1897)
VI.45 Pafnuty Chebyshev (1821–1894)
VI.46 Arthur Cayley (1821–1895)
VI.47 Charles Hermite (1822–1901)
VI.48 Leopold Kronecker (1823–1891)
VI.49 Georg Friedrich Bernhard Riemann (1826–1866)
VI.50 Julius Wilhelm Richard Dedekind (1831–1916)
VI.51 Émile Léonard Mathieu (1835–1890)
VI.52 Camille Jordan (1838–1922)
VI.53 Sophus Lie (1842–1899)
VI.54 Georg Cantor (1845–1918)
VI.55 William Kingdon Clifford (1845–1879)
VI.56 Gottlob Frege (1848–1925)
VI.57 Christian Felix Klein (1849–1925)
VI.58 Ferdinand Georg Frobenius (1849–1917)
VI.59 Sofya (Sonya) Kovalevskaya (1850–1891)
VI.60 William Burnside (1852–1927)
VI.61 Jules Henri Poincaré (1854–1912)
VI.62 Giuseppe Peano (1858–1932)
VI.63 David Hilbert (1862–1943)
VI.64 Hermann Minkowski (1864–1909)
VI.65 Jacques Hadamard (1865–1963)
VI.66 Ivar Fredholm (1866–1927)
VI.67 Charles-Jean de la Vallée Poussin (1866–1962)
VI.68 Felix Hausdor. (1868–1942)
VI.69 Élie Joseph Cartan (1869–1951)
VI.70 Emile Borel (1871–1956)
VI.71 Bertrand Arthur William Russell (1872–1970)
VI.72 Henri Lebesgue (1875–1941)
VI.73 Godfrey Harold Hardy (1877–1947)
VI.74 Frigyes (Frédéric) Riesz (1880–1956)
VI.75 Luitzen Egbertus Jan Brouwer (1881–1966)
VI.76 Emmy Noether (1882–1935)
VI.77 Wacław Sierpínski (1882–1969)
VI.78 George Birkhoff (1884–1944)
VI.79 John Edensor Littlewood (1885–1977)
VI.80 Hermann Weyl (1885–1955)
VI.81 Thoralf Skolem (1887–1963)
VI.82 Srinivasa Ramanujan (1887–1920)
VI.83 Richard Courant (1888–1972)
VI.84 Stefan Banach (1892–1945)
VI.85 Norbert Wiener (1894–1964)
VI.86 Emil Artin (1898–1962)
VI.87 Alfred Tarski (1901–1983)
VI.88 Andrei Nikolaevich Kolmogorov (1903–1987)
VI.89 Alonzo Church (1903–1995)
VI.90 William Vallance Douglas Hodge (1903–1975)
VI.91 John von Neumann (1903–1957)
VI.92 Kurt Gödel (1906–1978)
VI.93 André Weil (1906–1998)
VI.94 Alan Turing (1912–1954)
VI.95 Abraham Robinson (1918–1974)
VI.96 Nicolas Bourbaki (1935–)
Part VII The Influence of Mathematics
VII.1 Mathematics and Chemistry
VII.2 Mathematical Biology
VII.3 Wavelets and Applications
VII.4 The Mathematics of Traffic in Networks
VII.5 The Mathematics of Algorithm Design
VII.6 Reliable Transmission of Information
VII.7 Mathematics and Cryptography
VII.8 Mathematics and Economic Reasoning
VII.9 The Mathematics of Money
VII.10 Mathematical Statistics
VII.11 Mathematics and Medical Statistics
VII.12 Analysis, Mathematical and Philosophical
VII.13 Mathematics and Music
VII.14 Mathematics and Art
Part VIII Final Perspectives
VIII.1 The Art of Problem Solving
VIII.2 “Why Mathematics?” You Might Ask
VIII.3 The Ubiquity of Mathematics
VIII.4 Numeracy
VIII.5 Mathematics: An Experimental Science
VIII.6 Advice to a Young Mathematician
VIII.7 A Chronology of Mathematical Events
Index
The Princeton Companion to Mathematics
This page intentionally left blank
The Princeton Companion to Mathematics editor Timothy Gowers University of Cambridge associate editors June Barrow-Green The Open University Imre Leader University of Cambridge Princeton University Press Princeton and Oxford
Copyright © 2008 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data The Princeton companion to mathematics / Timothy Gowers, editor ; June Barrow-Green, Imre Leader, associate editors. p. cm. Includes bibliographical references and index. ISBN 978-0-691-11880-2 (hardcover : alk. paper) 1. Mathematics—Study and teaching (Higher) 2. Princeton University. I. Gowers, Timothy. II. Barrow-Green, June, date– III. Leader, Imre. QA11.2.P745 2008 510—dc22 2008020450 British Library Cataloging-in-Publication Data is available Grateful acknowledgment is made for permission to reprint the following illustrations in part VI: Page 739. Portrait of René Descartes taken from Pantheon berühmter Menschen aller Zeiten (Zwickau, 1830). Courtesy of Niedersächsische Staats- und Universitätsbibliothek Göttingen. Page 742. Portrait of Isaac Newton. By permission of the Master and Fellows, Trinity College Cambridge. Page 744. Copy after a portrait of Gottfried Leibniz by Andreas Scheits (1703). Courtesy of Gottfried Wilhelm Leibniz Bibliothek—Niedersächsische Landesbibliothek Hannover. Page 748. Portrait of Leonhard Euler by J. F. A. Darbès (inv. no. 1829-8). Copyright: © Musée d’art et d’histoire, Ville de Genève. Page 756. Portrait of Carl Friedrich Gauss. Courtesy of Niedersächsische Staats- und Universitätsbibliothek Göttingen. Page 775. Portrait of Bernhard Riemann. Courtesy of Niedersächsische Staats- und Universitätsbibliothek Göttingen. Page 786. Portrait of Henri Poincaré. Courtesy of Henri Poincaré Archives (CNRS,UMR 7117, Nancy). Page 788. Portrait of David Hilbert. Courtesy of Niedersächsische Staats- und Universitätsbibliothek Göttingen. This book has been composed in LucidaBright Project management and composition by T&T Productions Ltd, London Printed on acid-free paper ∞ press.princeton.edu Printed in the United States of America 1 2 3 4 5 6 7 8 9 10
Contents Preface Contributors ix xvii Part I Introduction I.1 I.2 I.3 I.4 What Is Mathematics About? The Language and Grammar of Mathematics Some Fundamental Mathematical Definitions The General Goals of Mathematical Research 1 8 16 47 Part II The Origins of Modern Mathematics II.1 II.2 II.3 II.4 II.5 II.6 II.7 From Numbers to Number Systems Geometry The Development of Abstract Algebra Algorithms The Development of Rigor in 117 Mathematical Analysis The Development of the Idea of Proof 129 The Crisis in the Foundations of Mathematics 142 77 83 95 106 Part III Mathematical Concepts The Axiom of Choice III.1 The Axiom of Determinacy III.2 Bayesian Analysis III.3 Braid Groups III.4 Buildings III.5 Calabi–Yau Manifolds III.6 Cardinals III.7 Categories III.8 III.9 Compactness and Compactification III.10 Computational Complexity Classes III.11 Countable and Uncountable Sets III.12 C∗ III.13 Curvature III.14 Designs -Algebras 157 159 159 160 161 163 165 165 167 169 170 172 172 172 III.15 Determinants III.16 Differential Forms and Integration III.17 Dimension III.18 Distributions III.19 Duality III.20 Dynamical Systems and Chaos III.21 Elliptic Curves III.22 The Euclidean Algorithm and Continued Fractions III.23 The Euler and Navier–Stokes Equations III.24 Expanders III.25 The Exponential and Logarithmic Functions III.26 The Fast Fourier Transform III.27 The Fourier Transform III.28 Fuchsian Groups III.29 Function Spaces III.30 Galois Groups III.31 The Gamma Function III.32 Generating Functions III.33 Genus III.34 Graphs III.35 Hamiltonians III.36 The Heat Equation III.37 Hilbert Spaces III.38 Homology and Cohomology III.39 Homotopy Groups III.40 The Ideal Class Group III.41 Irrational and Transcendental Numbers III.42 The Ising Model III.43 Jordan Normal Form III.44 Knot Polynomials III.45 K-Theory III.46 The Leech Lattice III.47 L-Functions III.48 Lie Theory III.49 Linear and Nonlinear Waves and Solitons III.50 Linear Operators and Their Properties III.51 Local and Global in Number Theory III.52 The Mandelbrot Set III.53 Manifolds III.54 Matroids III.55 Measures 174 175 180 184 187 190 190 191 193 196 199 202 204 208 210 213 213 214 215 215 215 216 219 221 221 221 222 223 223 225 227 227 228 229 234 239 241 244 244 244 246
vi Contents III.56 Metric Spaces III.57 Models of Set Theory III.58 Modular Arithmetic III.59 Modular Forms III.60 Moduli Spaces III.61 The Monster Group III.62 Normed Spaces and Banach Spaces III.63 Number Fields III.64 Optimization and Lagrange Multipliers III.65 Orbifolds III.66 Ordinals III.67 The Peano Axioms III.68 Permutation Groups III.69 Phase Transitions III.70 π III.71 Probability Distributions III.72 Projective Space III.73 Quadratic Forms III.74 Quantum Computation III.75 Quantum Groups III.76 Quaternions, Octonions, and Normed Division Algebras III.77 Representations III.78 Ricci Flow III.79 Riemann Surfaces III.80 The Riemann Zeta Function III.81 Rings, Ideals, and Modules III.82 Schemes III.83 The Schrödinger Equation III.84 The Simplex Algorithm III.85 Special Functions III.86 The Spectrum III.87 Spherical Harmonics III.88 Symplectic Manifolds III.89 Tensor Products III.90 Topological Spaces III.91 Transforms III.92 Trigonometric Functions III.93 Universal Covers III.94 Variational Methods III.95 Varieties III.96 Vector Bundles III.97 Von Neumann Algebras III.98 Wavelets III.99 The Zermelo–Fraenkel Axioms Part IV Branches of Mathematics IV.1 IV.2 IV.3 IV.4 Algebraic Numbers Analytic Number Theory Computational Number Theory Algebraic Geometry 247 248 249 250 252 252 252 254 255 257 258 258 259 261 261 263 267 267 269 272 275 279 279 282 283 284 285 285 288 290 294 295 297 301 301 303 307 309 310 313 313 313 313 314 315 332 348 363 Arithmetic Geometry Algebraic Topology Differential Topology Moduli Spaces Representation Theory IV.5 372 IV.6 383 IV.7 396 IV.8 408 IV.9 419 IV.10 Geometric and Combinatorial Group Theory 431 IV.11 Harmonic Analysis 448 IV.12 Partial Differential Equations 455 IV.13 General Relativity and the Einstein Equations 483 493 IV.14 Dynamics 510 IV.15 Operator Algebras IV.16 Mirror Symmetry 523 539 IV.17 Vertex Operator Algebras 550 IV.18 Enumerative and Algebraic Combinatorics 562 IV.19 Extremal and Probabilistic Combinatorics 575 IV.20 Computational Complexity IV.21 Numerical Analysis 604 615 IV.22 Set Theory 635 IV.23 Logic and Model Theory 647 IV.24 Stochastic Processes IV.25 Probabilistic Models of Critical Phenomena 657 IV.26 High-Dimensional Geometry and Its Probabilistic Analogues Part V Theorems and Problems The ABC Conjecture The Atiyah–Singer Index Theorem The Banach–Tarski Paradox The Birch–Swinnerton-Dyer Conjecture Carleson’s Theorem The Central Limit Theorem The Classification of Finite Simple Groups Dirichlet’s Theorem Ergodic Theorems Fermat’s Last Theorem Fixed Point Theorems The Four-Color Theorem The Fundamental Theorem of Algebra The Fundamental Theorem of Arithmetic Gödel’s Theorem Gromov’s Polynomial-Growth Theorem V.1 V.2 V.3 V.4 V.5 V.6 V.7 V.8 V.9 V.10 V.11 V.12 V.13 V.14 V.15 V.16 V.17 Hilbert’s Nullstellensatz V.18 The Independence of the Continuum Hypothesis Inequalities The Insolubility of the Halting Problem The Insolubility of the Quintic Liouville’s Theorem and Roth’s Theorem The P versus NP Problem The Poincaré Conjecture V.19 V.20 V.21 V.22 V.23 Mostow’s Strong Rigidity Theorem V.24 V.25 670 681 681 684 685 686 687 687 689 689 691 693 696 698 699 700 702 703 703 703 706 708 710 711 713 714
Contents V.26 V.27 V.28 V.29 V.30 V.31 V.32 V.33 V.34 V.35 The Prime Number Theorem and the Riemann Hypothesis Problems and Results in Additive Number Theory From Quadratic Reciprocity to Class Field Theory Rational Points on Curves and the Mordell Conjecture The Resolution of Singularities The Riemann–Roch Theorem The Robertson–Seymour Theorem The Three-Body Problem The Uniformization Theorem The Weil Conjectures Part VI Mathematicians VI.6 VI.1 VI.2 VI.3 VI.4 VI.5 Pythagoras (ca. 569 b.c.e.–ca. 494 b.c.e.) Euclid (ca. 325 b.c.e.–ca. 265 b.c.e.) Archimedes (ca. 287 b.c.e.–212 b.c.e.) Apollonius (ca. 262 b.c.e.–ca. 190 b.c.e.) Abu Ja’far Muhammad ibn M¯us¯a al-Khw¯arizm¯ı (800–847) Leonardo of Pisa (known as Fibonacci) (ca. 1170–ca. 1250) Girolamo Cardano (1501–1576) VI.7 Rafael Bombelli (1526–after 1572) VI.8 VI.9 François Viète (1540–1603) VI.10 Simon Stevin (1548–1620) VI.11 René Descartes (1596–1650) VI.12 Pierre Fermat (160?–1665) VI.13 Blaise Pascal (1623–1662) VI.14 Isaac Newton (1642–1727) VI.15 Gottfried Wilhelm Leibniz (1646–1716) VI.16 Brook Taylor (1685–1731) VI.17 Christian Goldbach (1690–1764) VI.18 The Bernoullis (fl. 18th century) VI.19 Leonhard Euler (1707–1783) VI.20 Jean Le Rond d’Alembert (1717–1783) VI.21 Edward Waring (ca. 1735–1798) VI.22 Joseph Louis Lagrange (1736–1813) VI.23 Pierre-Simon Laplace (1749–1827) VI.24 Adrien-Marie Legendre (1752–1833) VI.25 Jean-Baptiste Joseph Fourier (1768–1830) VI.26 Carl Friedrich Gauss (1777–1855) VI.27 Siméon-Denis Poisson (1781–1840) VI.28 Bernard Bolzano (1781–1848) VI.29 Augustin-Louis Cauchy (1789–1857) VI.30 August Ferdinand Möbius (1790–1868) VI.31 Nicolai Ivanovich Lobachevskii (1792–1856) VI.32 George Green (1793–1841) VI.33 Niels Henrik Abel (1802–1829) VI.34 János Bolyai (1802–1860) VI.35 Carl Gustav Jacob Jacobi (1804–1851) VI.36 Peter Gustav Lejeune Dirichlet (1805–1859) VI.37 William Rowan Hamilton (1805–1865) VI.38 Augustus De Morgan (1806–1871) VI.39 Joseph Liouville (1809–1882) VI.40 Ernst Eduard Kummer (1810–1893) VI.41 Évariste Galois (1811–1832) VI.42 James Joseph Sylvester (1814–1897) VI.43 George Boole (1815–1864) VI.44 Karl Weierstrass (1815–1897) VI.45 Pafnuty Chebyshev (1821–1894) VI.46 Arthur Cayley (1821–1895) VI.47 Charles Hermite (1822–1901) VI.48 Leopold Kronecker (1823–1891) VI.49 Georg Friedrich Bernhard Riemann vii 762 762 764 765 765 766 767 767 768 769 770 771 772 773 773 (1826–1866) 774 VI.50 Julius Wilhelm Richard Dedekind (1831–1916) 776 776 VI.51 Émile Léonard Mathieu (1835–1890) 777 VI.52 Camille Jordan (1838–1922) VI.53 Sophus Lie (1842–1899) 777 778 VI.54 Georg Cantor (1845–1918) 780 VI.55 William Kingdon Clifford (1845–1879) 780 VI.56 Gottlob Frege (1848–1925) 782 VI.57 Christian Felix Klein (1849–1925) VI.58 Ferdinand Georg Frobenius (1849–1917) 783 784 VI.59 Sofya (Sonya) Kovalevskaya (1850–1891) 785 VI.60 William Burnside (1852–1927) 785 VI.61 Jules Henri Poincaré (1854–1912) 787 VI.62 Giuseppe Peano (1858–1932) VI.63 David Hilbert (1862–1943) 788 789 VI.64 Hermann Minkowski (1864–1909) 790 VI.65 Jacques Hadamard (1865–1963) VI.66 Ivar Fredholm (1866–1927) 791 VI.67 Charles-Jean de la Vallée Poussin (1866–1962) 792 792 VI.68 Felix Hausdorff (1868–1942) 794 VI.69 Élie Joseph Cartan (1869–1951) VI.70 Emile Borel (1871–1956) 795 VI.71 Bertrand Arthur William Russell (1872–1970) 795 VI.72 Henri Lebesgue (1875–1941) 796 797 VI.73 Godfrey Harold Hardy (1877–1947) 798 VI.74 Frigyes (Frédéric) Riesz (1880–1956) 799 VI.75 Luitzen Egbertus Jan Brouwer (1881–1966) 800 VI.76 Emmy Noether (1882–1935) VI.77 Wacław Sierpi´nski (1882–1969) 801 802 VI.78 George Birkhoff (1884–1944) 803 VI.79 John Edensor Littlewood (1885–1977) 805 VI.80 Hermann Weyl (1885–1955) VI.81 Thoralf Skolem (1887–1963) 806 807 VI.82 Srinivasa Ramanujan (1887–1920) 808 VI.83 Richard Courant (1888–1972) 809 VI.84 Stefan Banach (1892–1945) VI.85 Norbert Wiener (1894–1964) 811 714 715 718 720 722 723 725 726 728 729 733 734 734 735 736 737 737 737 737 738 739 740 741 742 743 745 745 745 747 749 750 751 752 754 755 755 757 757 758 759 759 760 760
分享到:
收藏