2021 年湖北省襄阳市中考数学真题及答案
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。如需改动,用皮擦干净
后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题
1.下列各数中最大的是(
)
A. 3
B. 2
C.0
D.1
2.下列计算正确的是(
)
A. 3
a
3
a
a
B. 3
a a
3
6
a
C.
33
a
6
a
D.
ab
23
ab
6
3.如图, //a b , AC b ,重足为C ,
A
40
,则 1 等于(
)
A.40°
B.45°
C.50°
D.60°
4.若二次根式
3x 在实数范围内有意义,则 x 的取值范围是(
)
A.
3
x
B. 3
x
C.
3
x
D.
3
x
5.如图所示的几何体的主视图是(
)
A.
B.
C.
D.
6.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是 5000 元,现在生产一
吨药的成本是 4050 元.设生产成本的年平均下降率为 x ,下面所列方程正确的是(
)
A.
5000 1
x
2
4050
C.
5000 1
x
2
4050
B.
4050 1
x
2
5000
D.
4050 1
x
2
5000
7.正多边形的一个外角等于 60°,这个多边形的边数是(
)
A.3
B.6
C.9
D.12
8.不透明袋子中装有除颜色外完全相同的 2 个红球和 1 个白球,从袋子中随机摸出 2 个球,下列事件是必
然事件的是(
)
A.摸出的 2 个球中至少有 1 个红球
B.摸出的 2 个球都是白球
C.摸出的 2 个球中 1 个红球、1 个白球
D.摸出的 2 个球都是红球
9.我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiǎ)生其中,出水一尺,
引葭赴岸,适与岸齐.间水深几何.”(丈、尺是长度单位,1 丈 10 尺,)其大意为:有一个水池,水面
是一个边长为 10 尺的正方形,在水池正中央有一根芦苇,它高出水面 1 尺.如果把这根芦苇拉向水池一边
的中点,它的顶端恰好到达池边的水面,水的深度是多少?则水深为(
)
A.10 尺
B.11 尺
C.12 尺
D.13 尺
10.一次函数 y
ax b
的图象如图所示,则二次函数
y
ax
2
的图象可能是( )
bx
A.
B.
C.
D.
二、填空题
11.据统计,2021 年“五·一”劳动节小长假期间,襄阳市约接待游客 2270000 人次.数字 2270000 用科
学记数法表示为______.
12.不等式组
1
x
2
2 4
x
1
x
x
的解集是______.
13.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“---”(图中虚线)的下方,
“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“---”
上方的概率是______.
14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高
度 y (单位:m )与它距离喷头的水平距离 x (单位:m )之间满足函数关系式
y
22
x
4
x
1
,喷出水珠
的最大高度是______ m .
15.点 O 是 ABC
的外心,若
BOC
110
°,则 BAC 为______.
16.如图,正方形 ABCD 的对角线相交于点O ,点 E 在边 BC 上,点 F 在 CB 的延长线上,
EAF
45
, AE
交 BD 于点G ,
tan
BAE
,
1
2
BF ,则 FG ______.
2
三、解答题
17.先化简,再求值:
2
x
x
1
2
x
x
1
x
,其中
x
2 1
.
18.如图,建筑物 BC 上有一旗杆 AB ,从与 BC 相距 20m 的 D 处观测旗杆项部 A 的仰角为 52°,观测旗杆
底部 B 的仰角为 45°,求旗杆 AB 的高度(结果保留小数点后一位.参考数据:sin52
0.79
,cos52
0.62
,
tan52
, 2
1.28
1.41
).
19.为庆祝中国共产党建党 100 周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成
绩,抽样调查了七,八年级部分学生的分数,过程如下:
(1)收集数据从该校七.八年级学生中各随机抽取 20 名学生的分数,其中八年级的分数如下:
81
83
84
85
86
87
87
88
89
90
92
92
93
95
95
95
99
99
100
100
(2)整理、描述数据按如下分段整理描述样本数据:
x 85
85
x 90
90
x 95
95
x
100
80
分数 x
人数
年级
七年级 4
6
2
8
a
八年级 3
4
7
(3)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:
年级
平均数 中位数 众数 方差
七年级 91
八年级 91
89
b
97
40.9
c
33.2
根据以上提供的信息,解答下列问题:
①填空: a ______,b ______,c ______;
②样本数据中,七年级甲同学和八年级乙同学的分数都为 90 分,______同学的分数在本年级抽取的分数中
从高到低排序更靠前(填“甲”或“乙”):
③从样本数据分析来看,分数较整齐的是______年级(填“七”或“八”);
④如果七年级共有 400 人参賽,则该年级约有______人的分数不低于 95 分.
20.如图, BD 为 ABCD
的对角线.
(1)作对角线 BD 的垂直平分线,分别交 AD , BC , BD 于点 E , F ,O (尺规作图,不写作法,保留作
图痕迹);
(2)连接 BE , DF .求证:四边形 BEDF 为菱形.
21.小欣在学习了反比例函数的图象与性质后,进一步研究了函数
y
1
x
1
的图象与性质.其研究过程如下:
(1)绘制函数图象
①列表:下表是 x 与 y 的几组对应值,其中 m ______;
x
y
…
…
4
3
2
3
2
4
3
2
3
1
2
0
1
2 …
1
3
1
2
1
2
3
3
2
m 1
2
1
3 …
②描点:根据表中的数值描点
,x y ,请补充描出点
0,m ;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质
判断下列说法是否正确(正确的填“√”,错误的填“×”).
①函数值 y 随 x 的增大而减小:______
②函数图象关于原点对称:______
③函数图象与直线
x 没有交点.______
1
22.如图,直线 AB 经过 O 上的点C ,直线 BO 与 O 交于点 F 和点 D , OA 与 O 交于点 E ,与 DC 交于
点G ,OA OB ,CA CB .
(1)求证: AB 是 O 的切线;
(2)若 / /
FC OA ,
CD ,求图中阴影部分面积.
6
23.为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖
的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:
进价(元/斤) 售价(元/斤)
鲢鱼 a
5
销量不超过 200 斤的部
销量超过 200 斤的部
草鱼 b
分
8
分
7
已知老李购进 10 斤鲢鱼和 20 斤草鱼需要 155 元,购进 20 斤鲢鱼和 10 斤草鱼需要 130 元.
(1)求 a ,b 的值;
(2)老李每天购进两种鱼共 300 斤,并在当天都销售完,其中销售鲢鱼不少于 80 斤且不超过 120 斤,设
每天销售鲢鱼 x 斤(销售过程中损耗不计).
①分别求出每天销售鲢鱼获利 1y (元),销售草鱼获利 2y (元)与 x 的函数关系式,并写出 x 的取值范围;
②端午节这天,老李让利销售,将鲢鱼售价每斤降低 m 元,草鱼售价全部定为 7 元斤,为了保证当天销售
这两种鱼总获利W (元)的最小值不少于 320 元,求 m 的最大值.
24.在 ABC
中,
ACB
90
,
AC m
BC
, D 是边 BC 上一点,将 ABD△
沿 AD 折叠得到 AED
,连接 BE .
(1)特例发现:如图 1,当 1m , AE 落在直线 AC 上时,
①求证: DAC
EBC
;
②填空:
CD
CE
的值为______;
(2)类比探究:如图 2,当 1m , AE 与边 BC 相交时,在 AD 上取一点G ,使 ACG
BCE
,CG 交 AE
于点 H .探究
CG
CE
的值(用含 m 的式子表示),并写出探究过程;
(3)拓展运用:在(2)的条件下,当
m , D 是 BC 的中点时,若
2
2
EB EH
,求 CG 的长.
6
25.如图,直线
y
1
2
与 x , y 轴分别交于 B , A ,顶点为 P 的抛物线
1
x
y
ax
2 2
ax
过点 A .
c
(1)求出点 A , B 的坐标及 c 的值;
(2)若函数
y
ax
2 2
ax
在3
c
4x 时有最大值为 2a ,求 a 的值;
(3)连接 AP ,过点 A 作 AP 的垂线交 x 轴于点 M .设 BMP
①直接写出 S 关于 a 的函数关系式及 a 的取值范围;
的面积为 S .
②结合 S 与 a 的函数图象,直接写出
S 时 a 的取值范围.
1
8