logo资料库

近似算法的设计与分析(英文版).pdf

第1页 / 共453页
第2页 / 共453页
第3页 / 共453页
第4页 / 共453页
第5页 / 共453页
第6页 / 共453页
第7页 / 共453页
第8页 / 共453页
资料共453页,剩余部分请下载后查看
Cover
Springer Optimization and Its Applications 62
Design and Analysis of Approximation Algorithms
ISBN 9781461417002
Preface
Contents
1 Introduction
1.1 Open Sesame
1.2 Design Techniques for Approximation Algorithms
1.3 Heuristics Versus Approximation
1.4 Notions in Computational Complexity
1.5 NP-Complete Problems
1.6 Performance Ratios
Exercises
Historical Notes
2 Greedy Strategy
2.1 Independent Systems
2.2 Matroids
2.3 Quadrilateral Condition on Cost Functions
2.4 Submodular Potential Functions
2.5 Applications
2.6 Nonsubmodular Potential Functions
Exercises
Historical Notes
3 Restriction
3.1 Steiner Trees and Spanning Trees
3.2 k-Restricted Steiner Trees
3.3 Greedy k-Restricted Steiner Trees
3.4 The Power of Minimum Spanning Trees
3.5 Phylogenetic Tree Alignment
Exercises
Historical Notes
4 Partition
4.1 Partition and Shifting
4.2 Boundary Area
4.3 Multilayer Partition
4.4 Double Partition
4.4.1 AWeighted Covering Problem
4.4.2 A 2-Approximation for WDS-UDG on a Small Cell
4.4.3 A 6-Approximation for WDS-UDG on a Large Cell
4.4.4 A (6 + ε)-Approximation for WDS-UDG
4.5 Tree Partition
Exercises
Historical Notes
5 Guillotine Cut
5.1 Rectangular Partition
5.2 1-Guillotine Cut
5.3 m-Guillotine Cut
5.4 Portals
5.5 Quadtree Partition and Patching
5.6 Two-Stage Portals
Exercises
Historical Notes
6 Relaxation
6.1 Directed Hamiltonian Cycles and Superstrings
6.2 Two-Stage Greedy Approximations
6.3 Connected Dominating Sets in Unit Disk Graphs
6.4 Strongly Connected Dominating Sets in Digraphs
6.5 Multicast Routing in Optical Networks
6.6 A Remark on Relaxation versus Restriction
Exercises
Historical Notes
7 Linear Programming
7.1 Basic Properties of Linear Programming
7.2 Simplex Method
7.3 Combinatorial Rounding
7.4 Pipage Rounding
7.5 Iterated Rounding
7.6 Random Rounding
Exercises
Historical Notes
8 Primal-Dual Schema and Local Ratio
8.1 Duality Theory and Primal-Dual Schema
8.2 General Cover
8.3 Network Design
8.4 Local Ratio
8.5 More on Equivalence
Exercises
Historical Notes
9 Semidefinite Programming
9.1 Spectrahedra
9.2 Semidefinite Programming
9.3 Hyperplane Rounding
9.4 Rotation of Vectors
9.5 Multivariate Normal Rounding
Exercises
Historical Notes
10 Inapproximability
10.1 Many–One Reductions with Gap
10.2 Gap Amplification and Preservation
10.3 APX-Completeness
10.4 PCP Theorem
10.5 (ρ ln n)-Inapproximability
10.6 nc-Inapproximability
Exercises
Historical Notes
Bibliography
Index
Springer Optimization and Its Applications VOLUME 62 Managing Editor Panos M. Pardalos (University of Florida) Editor–Combinatorial Optimization Ding-Zhu Du (University of Texas at Dallas) Advisory Board J. Birge (University of Chicago) C.A. Floudas (Princeton University) F. Giannessi (University of Pisa) H.D. Sherali (Virginia Polytechnic and State University) T. Terlaky (McMaster University) Y. Ye (Stanford University) Aims and Scope Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in opti- mization is the constantly increasing emphasis on the interdisciplinary na- ture of the field. Optimization has been a basic tool in all areas of applied mathematics, engineering, medicine, economics, and other sciences. The series Springer Optimization and Its Applications publishes under- graduate and graduate textbooks, monographs and state-of-the-art exposi- tory work that focus on algorithms for solving optimization problems and also study applications involving such problems. Some of the topics covered include nonlinear optimization (convex and nonconvex), network flow prob- lems, stochastic optimization, optimal control, discrete optimization, multi- objective programming, description of software packages, approximation techniques and heuristic approaches. For further volumes: http://www.springer.com/series/7393
Ding-Zhu Du •Ker-I KoDesign and Analysisof Approximation AlgorithmsXiaodong Hu•
Ding-Zhu Du Ker-I Ko Department of Computer Science Department of Computer Science University of Texas at Dallas State University of New York at Stony Brook Richardson, TX 75080 Stony Brook, NY 11794 USA USA dzdu@utdallas.edu keriko@cs.sunysb.edu Xiaodong Hu Institute of Applied Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China xdhu@amss.ac.cn ISSN 1931-6828 ISBN 978-1-4614-1700-2 e-ISBN 978-1-4614-1701-9 DOI 10.1007/978-1-4614-1701-9 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer soft-ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) 2011942512
PrefaceAnapproximationalgorithmisanefficientalgorithmthatproducessolutionstoanoptimizationproblemthatareguaranteedtobewithinafixedratiooftheoptimalsolution.Insteadofspendinganexponentialamountoftimefindingtheoptimalsolution,anapproximationalgorithmsettlesfornear-optimalsolutionswithinpoly-nomialtimeintheinputsize.Approximationalgorithmshavebeenstudiedsincethemid-1960s.Theirimportancewas,however,notfullyunderstooduntilthediscov-eryoftheNP-completenesstheory.Manywell-knownoptimizationproblemshavebeenproved,underreasonableassumptionsinthistheory,tobeintractable,inthesensethatoptimalsolutionstotheseproblemsarenotcomputablewithinpolyno-mialtime.Asaconsequence,near-optimalapproximationalgorithmsarethebestonecanexpectwhentryingtosolvetheseproblems.Inthepastdecade,theareaofapproximationalgorithmshasexperiencedanex-plosiverateofgrowth.Thisgrowthrateispartlyduetothedevelopmentofrelatedresearchareas,suchasdatamining,communicationnetworks,bioinformatics,andcomputationalgametheory.Thesenewlyestablishedresearchareasgeneratealargenumberofnew,intractableoptimizationproblems,mostofwhichhavedirectappli-cationstoreal-worldproblems,andsoefficientapproximatesolutionstothemareactivelysoughtafter.Inadditiontotheexternal,practicalneedforefficientapproximationalgorithms,thereisalsoanintrinsic,theoreticalmotivebehindtheresearchofapproximationalgorithms.Inthedesignofanexact-solutionalgorithm,themain,andoftenonly,measureofthealgorithm’sperformanceisitsrunningtime.Thisfixedmeasureof-tenlimitsourchoiceoftechniquesinthealgorithm’sdesign.Foranapproximationalgorithm,however,thereisanequallyimportantsecondmeasure,thatis,theper-formanceratioofthealgorithm,whichmeasureshowclosetheapproximational-v
viPrefacegorithm’soutputistotheoptimalsolution.Thismeasureaddsanewdimensiontothedesignandanalysisofapproximationalgorithms.Namely,wecannowstudythetradeoffbetweentherunningtimeandtheperformanceratioofapproximationalgo-rithms,andapplydifferentdesigntechniquestoachievedifferenttradeoffsbetweenthesetwomeasures.Inaddition,newtheoreticalissuesabouttheapproximationtoanoptimizationproblemneedtobeaddressed:Whatistheperformanceratioofanapproximationalgorithmforthisproblembasedoncertaintypesofdesignstrategy?Whatisthebestperformanceratioofanypolynomial-timeapproximationalgorithmforthisproblem?Doestheproblemhaveapolynomial-timeapproximationschemeorafullypolynomial-timeapproximationscheme?Thesequestionsarenotonlyofsignificanceinpracticeforthedesignofapproximationalgorithms;theyarealsoofgreattheoreticalinterest,withintriguingconnectionstotheNP-completenessthe-ory.Motivatedbythesetheoreticalquestionsandthegreatnumberofnewlydiscov-eredoptimizationproblems,peoplehavedevelopedmanynewdesigntechniquesforapproximationalgorithms,includingthegreedystrategy,therestrictionmethod,therelaxationmethod,partition,localsearch,powergraphs,andlinearandsemidef-initeprogramming.Acomprehensivesurveyofallthesemethodsandresultsinasinglebookisnotpossible.Weinsteadprovideinthisbookanintensivestudyofthemainmethods,withabundantapplicationsfollowingourdiscussionofeachmethod.Indeed,thisbookisorganizedaccordingtodesignmethodsinsteadofapplicationproblems.Thus,onecanstudyapproximationalgorithmsofthesamenatureto-gether,andlearnaboutthedesigntechniquesinamoreunifiedway.Tothisend,thebookisarrangedinthefollowingway:First,inChapter1,wegiveabriefintroduc-tiontotheconceptofNP-completenessandapproximationalgorithms.InChapter2,wegiveanin-depthanalysisofthegreedystrategy,includinggreedyalgorithmswithsubmodularpotentialfunctionsandthosewithnonsubmodularpotentialfunc-tions.InChapters3,4,and5,wecovervariousrestrictionmethods,includingpar-titionandGuillotinecutmethods,withapplicationstomanygeometricproblems.Inthenextfourchapters,westudytherelaxationmethods.InadditiontoageneraldiscussionoftherelaxationmethodinChapter6,wedevotethreechapterstoap-proximationalgorithmsbasedonlinearandsemidefiniteprogramming,includingtheprimal-dualschemaanditsequivalencewiththelocalratiomethod.Finally,inChapter10,wepresentvariousinapproximabilityresultsbasedonrecentworkintheNP-completenesstheory.Anumberofexamplesandexercisesareprovidedforeachdesigntechnique.Theyaredrawnfromdiverseareasofresearch,includingcommunicationnetworkdesign,opticalnetworks,wirelessadhocnetworks,sensornetworks,bioinformatics,socialnetworks,industrialengineering,andinformationmanagementsystems.ThisbookhasgrownoutoflecturenotesusedbytheauthorsattheUniversityofMinnesota,UniversityofTexasatDallas,TsinghuaUniversity,GraduateSchoolofChineseAcademyofSciences,Xi’anJiaotongUniversity,ZhejiangUniversity,EastChinaNormalUniversity,DalianUniversityofTechnology,XinjiangUniver-sity,NankaiUniversity,LanzhouJiaotongUniversity,XidianUniversity,andHarbinInstituteofTechnology.Inatypicalone-semesterclassforfirst-yeargraduatestu-
Prefaceviidents,onemaycoverthefirsttwochapters,oneortwochaptersontherestrictionmethod,twoorthreechaptersontherelaxationmethod,andChapter10.Withmoreadvancedstudents,onemayalsoteachaseminarcoursefocusingononeofthegreedy,restriction,orrelaxationmethods,basedonthecorrespondingchaptersofthisbookandsupplementarymaterialfromrecentresearchpapers.Forinstance,aseminaroncombinatorialoptimizationemphasizingapproximationsbasedonlinearandsemidefiniteprogrammingcanbeorganizedusingChapters7,8,and9.Thisbookhasbenefitedmuchfromthehelpofourfriends,colleagues,andstu-dents.WeareindebtedtoPeng-JunWan,WeiliWu,XiuzhenCheng,JieWang,Yin-fengXu,ZhaoZhang,DeyingLi,HejiaoHuang,HongZhu,GuochuanZhang,WeiWang,ShugangGao,XiaofengGao,FengZou,LingDing,XianyueLi,MyT.Thai,DonghyunKim,J.K.Willson,andRoozbehEbrahimiSoorchaei,whomademuch-valuedsuggestionsandcorrectionstotheearlierdraftsofthebook.WearealsogratefultoProfessorsFrancesYao,RichardKarp,RonaldGraham,andFanChungfortheirencouragement.SpecialthanksareduetoProfessorAndrewYaoandtheInstituteforTheoreticalComputerScience,TsinghuaUniversity,forthegeneroussupportandstimulatingenvironmenttheyprovidedforthefirsttwoauthorsduringtheirnumerousvisitstoTsinghuaUniversity.Dallas,TexasDing-ZhuDuStonyBrook,NewYorkKer-IKoBeijing,ChinaXiaodongHuAugust2011
分享到:
收藏