logo资料库

A Course in Probability Theory Kai Lai Chung.pdf

第1页 / 共432页
第2页 / 共432页
第3页 / 共432页
第4页 / 共432页
第5页 / 共432页
第6页 / 共432页
第7页 / 共432页
第8页 / 共432页
资料共432页,剩余部分请下载后查看
page 1
page 2
page 3
page 4
page 5
page 6
page 7
page 8
page 9
page 10
page 11
page 12
page 13
page 14
page 15
page 16
page 17
page 18
page 19
page 20
page 21
page 22
page 23
page 24
page 25
page 26
page 27
page 28
page 29
page 30
page 31
page 32
page 33
page 34
page 35
page 36
page 37
page 38
page 39
page 40
page 41
page 42
page 43
page 44
page 45
page 46
page 47
page 48
page 49
page 50
page 51
page 52
page 53
page 54
page 55
page 56
page 57
page 58
page 59
page 60
page 61
page 62
page 63
page 64
page 65
page 66
page 67
page 68
page 69
page 70
page 71
page 72
page 73
page 74
page 75
page 76
page 77
page 78
page 79
page 80
page 81
page 82
page 83
page 84
page 85
page 86
page 87
page 88
page 89
page 90
page 91
page 92
page 93
page 94
page 95
page 96
page 97
page 98
page 99
page 100
page 101
page 102
page 103
page 104
page 105
page 106
page 107
page 108
page 109
page 110
page 111
page 112
page 113
page 114
page 115
page 116
page 117
page 118
page 119
page 120
page 121
page 122
page 123
page 124
page 125
page 126
page 127
page 128
page 129
page 130
page 131
page 132
page 133
page 134
page 135
page 136
page 137
page 138
page 139
page 140
page 141
page 142
page 143
page 144
page 145
page 146
page 147
page 148
page 149
page 150
page 151
page 152
page 153
page 154
page 155
page 156
page 157
page 158
page 159
page 160
page 161
page 162
page 163
page 164
page 165
page 166
page 167
page 168
page 169
page 170
page 171
page 172
page 173
page 174
page 175
page 176
page 177
page 178
page 179
page 180
page 181
page 182
page 183
page 184
page 185
page 186
page 187
page 188
page 189
page 190
page 191
page 192
page 193
page 194
page 195
page 196
page 197
page 198
page 199
page 200
page 201
page 202
page 203
page 204
page 205
page 206
page 207
page 208
page 209
page 210
page 211
page 212
page 213
page 214
page 215
page 216
page 217
page 218
page 219
page 220
page 221
page 222
page 223
page 224
page 225
page 226
page 227
page 228
page 229
page 230
page 231
page 232
page 233
page 234
page 235
page 236
page 237
page 238
page 239
page 240
page 241
page 242
page 243
page 244
page 245
page 246
page 247
page 248
page 249
page 250
page 251
page 252
page 253
page 254
page 255
page 256
page 257
page 258
page 259
page 260
page 261
page 262
page 263
page 264
page 265
page 266
page 267
page 268
page 269
page 270
page 271
page 272
page 273
page 274
page 275
page 276
page 277
page 278
page 279
page 280
page 281
page 282
page 283
page 284
page 285
page 286
page 287
page 288
page 289
page 290
page 291
page 292
page 293
page 294
page 295
page 296
page 297
page 298
page 299
page 300
page 301
page 302
page 303
page 304
page 305
page 306
page 307
page 308
page 309
page 310
page 311
page 312
page 313
page 314
page 315
page 316
page 317
page 318
page 319
page 320
page 321
page 322
page 323
page 324
page 325
page 326
page 327
page 328
page 329
page 330
page 331
page 332
page 333
page 334
page 335
page 336
page 337
page 338
page 339
page 340
page 341
page 342
page 343
page 344
page 345
page 346
page 347
page 348
page 349
page 350
page 351
page 352
page 353
page 354
page 355
page 356
page 357
page 358
page 359
page 360
page 361
page 362
page 363
page 364
page 365
page 366
page 367
page 368
page 369
page 370
page 371
page 372
page 373
page 374
page 375
page 376
page 377
page 378
page 379
page 380
page 381
page 382
page 383
page 384
page 385
page 386
page 387
page 388
page 389
page 390
page 391
page 392
page 393
page 394
page 395
page 396
page 397
page 398
page 399
page 400
page 401
page 402
page 403
page 404
page 405
page 406
page 407
page 408
page 409
page 410
page 411
page 412
page 413
page 414
page 415
page 416
page 417
page 418
page 419
page 420
page 421
page 422
page 423
page 424
page 425
page 426
page 427
page 428
page 429
page 430
page 431
page 432
A COURSE IN PROBABILITY THEORY THIRD EDITION
A COURSE IN PROBABILITY THEORY THIRD EDITION Kai Lai Chung Stanford University ACADEMIC PRESS A l-iorcc_lurt Science and Technology Company San Diego San Francisco New York Boston London Sydney Tokyo
This book is printed on acid-free paper . COPYRIGHT © 2001, 1974, 1968 BY ACADEMIC PRESS ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM . WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER . Requests for permission to make copies of any part of the work should be mailed to the following address : Permissions Department, Harcourt, Inc ., 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 . ACADEMIC PRESS A Harcourt Science and Technology Company 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA h ttp ://www .academicpress .co m ACADEMIC PRESS Harcourt Place, 32 Jamestown Road, London, NW 17BY, UK http ://www .academicpress .com Library of Congress Cataloging in Publication Data : 00-106712 International Standard Book Number: 0-12-174151-6 PRINTED IN THE UNITED STATES OF AMERICA 00 01 02 03 IP 9 8 7 6 5 4 3 2 1
Contents Preface to the third edition Preface to the second edition Preface to the first edition ix xi xiii 1 J Distribution function 1 .1 Monotone functions 1 .2 Distribution functions 1 .3 Absolutely continuous and singular distributions 7 1 11 2 I Measure theory 2 .1 Classes of sets 2.2 Probability measures and their distribution 16 functions 21 3 1 Random variable . Expectation . Independence 3.1 General definitions 3.2 Properties of mathematical expectation 3.3 Independence 34 53 41 4 Convergence concepts 4.1 Various modes of convergence 4.2 Almost sure convergence ; Borel-Cantelli lemma 68 75
vi I CONTENTS 4 .3 Vague convergence 4 .4 Continuation 91 4 .5 Uniform integrability ; convergence of moments 84 99 5 1 Law of large numbers . Random series 106 5.1 Simple limit theorems 5.2 Weak law of large numbers 5.3 Convergence of series 121 5.4 Strong law of large numbers 5.5 Applications 138 Bibliographical Note 148 112 129 6 1 Characteristic function 150 6.1 General properties ; convolutions 6.2 Uniqueness and inversion 160 6.3 Convergence theorems 6.4 Simple applications 6.5 Representation theorems 6.6 Multidimensional case ; Laplace transforms 169 187 175 196 Bibliographical Note 204 7 1 Central limit theorem and its ramifications 205 7.1 Liapounov's theorem 7.2 Lindeberg-Feller theorem 7.3 Ramifications of the central limit theorem 7.4 Error estimation 7 .5 Law of the iterated logarithm 7 .6 Infinite divisibility 214 242 235 250 Bibliographical Note 261 8 1 Random walk 224 263 270 8 .1 Zero-or-one laws 8 .2 Basic notions 8 .3 Recurrence 8 .4 Fine structure 8 .5 Continuation 288 298 Bibliographical Note 278 308
9 1 Conditioning . Markov property. Martingale CONTENTS I vii 9.1 Basic properties of conditional expectation 9.2 Conditional independence ; Markov property 9.3 Basic properties of smartingales 9.4 Inequalities and convergence 9.5 Applications 334 346 360 Bibliographical Note 373 310 322 Supplement : Measure and Integral 375 1 Construction of measure 2 Characterization of extensions 3 Measures in R 4 Integral 395 5 Applications 407 387 380 General Bibliography 413 Index 415
Preface to the third edition In this new edition, I have added a Supplement on Measure and Integral . The subject matter is first treated in a general setting pertinent to an abstract measure space, and then specified in the classic Borel-Lebesgue case for the real line. The latter material, an essential part of real analysis, is presupposed in the original edition published in 1968 and revised in the second edition of 1974 . When I taught the course under the title "Advanced Probability" at Stanford University beginning in 1962, students from the departments of statistics, operations research (formerly industrial engineering), electrical engi- neering, etc . often had to take a prerequisite course given by other instructors before they enlisted in my course . In later years I prepared a set of notes, lithographed and distributed in the class, to meet the need . This forms the basis of the present Supplement . It is hoped that the result may as well serve in an introductory mode, perhaps also independently for a short course in the stated topics . The presentation is largely self-contained with only a few particular refer- ences to the main text. For instance, after (the old) §2 .1 where the basic notions of set theory are explained, the reader can proceed to the first two sections of the Supplement for a full treatment of the construction and completion of a general measure ; the next two sections contain a full treatment of the mathe- matical expectation as an integral, of which the properties are recapitulated in §3 .2. In the final section, application of the new integral to the older Riemann integral in calculus is described and illustrated with some famous examples . Throughout the exposition, a few side remarks, pedagogic, historical, even
x I PREFACE TO THE THIRD EDITION judgmental, of the kind I used to drop in the classroom, are approximately reproduced . In drafting the Supplement, I consulted Patrick Fitzsimmons on several occasions for support . Giorgio Letta and Bernard Bru gave me encouragement for the uncommon approach to Borel's lemma in §3, for which the usual proof always left me disconsolate as being too devious for the novice's appreciation . A small number of additional remarks and exercises have been added to the main text . Warm thanks are due: to Vanessa Gerhard of Academic Press who deci- phered my handwritten manuscript with great ease and care ; to Isolde Field of the Mathematics Department for unfailing assistence ; to Jim Luce for a mission accomplished . Last and evidently not least, my wife and my daughter Corinna performed numerous tasks indispensable to the undertaking of this publication.
分享到:
收藏