logo资料库

Deep Learning, Vol. 2 From Basics to Practice.pdf

第1页 / 共914页
第2页 / 共914页
第3页 / 共914页
第4页 / 共914页
第5页 / 共914页
第6页 / 共914页
第7页 / 共914页
第8页 / 共914页
资料共914页,剩余部分请下载后查看
Volume 2 DEEP LEARNING: From Basics to Practice Andrew Glassner
Deep Learning: From Basics to Practice Volume 2 Copyright (c) 2018 by Andrew Glassner www.glassner.com / @AndrewGlassner All rights reserved. No part of this book, except as noted below, may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the author, except in the case of brief quotations embedded in critical articles or reviews. The above reservation of rights does not apply to the program files associated with this book (available on GitHub), or to the images and figures (also available on GitHub), which are released under the MIT license. Any images or figures that are not original to the author retain their original copyrights and protections, as noted in the book and on the web pages where the images are provided. All software in this book, or in its associated repositories, is provided “as is,” with- out warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular pupose, and noninfringe- ment. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort, or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software. First published February 20, 2018 Version 1.0.1 March 3, 2018 March 22, 2018 Version 1.1 Published by The Imaginary Institute, Seattle, WA. http://www.imaginary-institute.com Contact: andrew@imaginary-institute.com
For Niko, who’s always there with a smile and a wag.
Contents of Both Volumes Volume 1 Preface ....................................................................i Chapter 1: An Introduction ...................................1 1.1 Why This Chapter Is Here ...............................3 1.1.1 Extracting Meaning from Data ............................ 4 1.1.2 Expert Systems ..................................................... 6 1.2 Learning from Labeled Data ..........................9 1.2.1 A Learning Strategy .............................................. 10 1.2.2 A Computerized Learning Strategy ................... 12 1.2.3 Generalization ...................................................... 16 1.2.4 A Closer Look at Learning ................................... 18 1.3 Supervised Learning ........................................21 1.3.1 Classification ......................................................... 21 1.3.2 Regression ............................................................. 22 1.4 Unsupervised Learning ...................................25 1.4.1 Clustering .............................................................. 25 1.4.2 Noise Reduction ................................................... 26 1.4.3 Dimensionality Reduction .................................. 28 1.5 Generators ........................................................32 1.6 Reinforcement Learning .................................34 1.7 Deep Learning ..................................................37 1.8 What’s Coming Next .......................................43 References ..............................................................44 Image credits ................................................................. 45
Chapter 2: Randomness and Basic Statistics .....46 2.1 Why This Chapter Is Here ...............................48 2.2 Random Variables ...........................................49 2.2.1 Random Numbers in Practice............................. 57 2.3 Some Common Distributions ........................59 2.3.1 The Uniform Distribution ................................... 60 2.3.2 The Normal Distribution .................................... 61 2.3.3 The Bernoulli Distribution ................................. 67 2.3.4 The Multinoulli Distribution .............................. 69 2.3.5 Expected Value .................................................... 70 2.4 Dependence ....................................................70 2.4.1 i.i.d. Variables ........................................................ 71 2.5 Sampling and Replacement ...........................71 2.5.1 Selection With Replacement .............................. 73 2.5.2 Selection Without Replacement ....................... 74 2.5.3 Making Selections ............................................... 75 2.6 Bootstrapping .................................................76 2.7 High-Dimensional Spaces ..............................82 2.8 Covariance and Correlation ...........................85 2.8.1 Covariance ............................................................ 86 2.8.2 Correlation ........................................................... 88 2.9 Anscombe’s Quartet .......................................93 References ..............................................................95
Chapter 3: Probability ...........................................97 3.1 Why This Chapter Is Here ...............................99 3.2 Dart Throwing .................................................100 3.3 Simple Probability ..........................................103 3.4 Conditional Probability ..................................104 3.5 Joint Probability ..............................................109 3.6 Marginal Probability .......................................114 3.7 Measuring Correctness ..................................115 3.7.1 Classifying Samples .............................................. 116 3.7.2 The Confusion Matrix ......................................... 119 3.7.3 Interpreting the Confusion Matrix ................... 121 3.7.4 When Misclassification Is Okay ......................... 126 3.7.5 Accuracy ................................................................ 129 3.7.6 Precision ............................................................... 130 3.7.7 Recall ..................................................................... 132 3.7.8 About Precision and Recall ................................ 134 3.7.9 Other Measures ................................................... 137 3.7.10 Using Precision and Recall Together ............... 141 3.7.11 f1 Score ................................................................. 143 3.8 Applying the Confusion Matrix ....................144 References ..............................................................151
Chapter 4: Bayes Rule ...........................................153 4.1 Why This Chapter Is Here ..............................155 4.2 Frequentist and Bayesian Probability .........156 4.2.1 The Frequentist Approach .................................. 156 4.2.2 The Bayesian Approach ...................................... 157 4.2.3 Discussion ............................................................ 158 4.3 Coin Flipping ..................................................159 4.4 Is This a Fair Coin? ..........................................161 4.4.1 Bayes’ Rule ............................................................ 173 4.4.2 Notes on Bayes’ Rule .......................................... 175 4.5 Finding Life Out There ..................................178 4.6 Repeating Bayes’ Rule ....................................183 4.6.1 The Posterior-Prior Loop .................................... 184 4.6.2 Example: Which Coin Do We Have? ................. 186 4.7 Multiple Hypotheses ......................................194 References ..............................................................203 Chapter 5: Curves and Surfaces ...........................205 5.1 Why This Chapter Is Here ...............................207 5.2 Introduction ....................................................207 5.3 The Derivative .................................................210 5.4 The Gradient ...................................................222 References ..............................................................229
Chapter 6: Information Theory ............................231 6.1 Why This Chapter Is Here ..............................233 6.1.1 Information: One Word, Two Meanings ............ 233 6.2 Surprise and Context .....................................234 6.2.1 Surprise ................................................................. 234 6.2.2 Context ................................................................. 236 6.3 The Bit as Unit ................................................237 6.4 Measuring Information .................................238 6.5 The Size of an Event .......................................240 6.6 Adaptive Codes ...............................................241 6.7 Entropy ...........................................................250 6.8 Cross-Entropy .................................................253 6.8.1 Two Adaptive Codes ............................................ 253 6.8.2 Mixing Up the Codes ......................................... 257 6.9 KL Divergence .................................................260 References ..............................................................262 Chapter 7: Classification .......................................265 7.1 Why This Chapter Is Here ...............................267 7.2 2D Classification ..............................................268 7.2.1 2D Binary Classification ....................................... 269 7.3 2D Multi-class classification ..........................275 7.4 Multiclass Binary Categorizing......................277 7.4.1 One-Versus-Rest ................................................. 278 7.4.2 One-Versus-One ................................................. 280 7.5 Clustering .........................................................286
分享到:
收藏