Statistics of Extremes
Theory and Applications
Jan Beirlant, Yuri Goegebeur, and Jozef Teugels
University Center of Statistics, Katholieke Universiteit Leuven,
Belgium
Johan Segers
Department of Econometrics, Tilburg University, The Netherlands
with contributions from:
Department of Mathematical Statistics, University of the Free State,
Daniel De Waal
South Africa
Department of Meteorology, The University of Reading, UK
Chris Ferro
Copyright 2004
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777
Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com
All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should
be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44)
1243 770620.
This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.
Other Wiley Editorial Offices
John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA
Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA
Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany
John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia
John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1
Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.
Library of Congress Cataloging-in-Publication Data
Statistics of extremes : theory and applications / Jan Beirlant . . . [et al.], with contributions
from Daniel De Waal, Chris Ferro.
p. cm.—(Wiley series in probability and statistics)
Includes bibliographical references and index.
ISBN 0-471-97647-4 (acid-free paper)
1. Mathematical statistics. 2. Maxima and minima.
QA276.S783447 2004
519.5–dc22
I. Beirlant, Jan.
II. Series.
2004051046
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0-471-97647-4
Produced from LaTeX files supplied by the authors and processed by Laserwords Private Limited,
Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.
Contents
Preface
. .
.
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
1.2.1 Quantile-quantile plots .
. .
1.2.2 Excess plots
. .
. .
. .
1.3 Domains of Applications . .
. .
1 WHY EXTREME VALUE THEORY?
1.1 A Simple Extreme Value Problem .
1.2 Graphical Tools for Data Analysis .
. .
. .
. .
. .
. .
. .
. .
. .
. .
1.3.1 Hydrology .
. .
1.3.2 Environmental research and meteorology . .
. .
. .
1.3.3
. .
1.3.4
. .
1.3.5 Geology and seismic analysis .
. .
. .
. .
1.3.6 Metallurgy .
. .
. .
. .
1.3.7 Miscellaneous applications .
. .
. .
. .
Insurance applications .
Finance applications . .
1.4 Conclusion .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
2 THE PROBABILISTIC SIDE OF EXTREME
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
VALUE THEORY
. .
2.1 The Possible Limits .
. .
2.2 An Example .
. .
2.3 The Fr´echet-Pareto Case: γ > 0 . .
. .
. .
. .
. .
. .
. .
2.3.1 The domain of attraction condition .
. .
2.3.2 Condition on the underlying distribution . .
. .
2.3.3 The historical approach . .
2.3.4 Examples . .
. .
. .
Fitting data from a Pareto-type distribution .
2.3.5
. .
. .
2.4.1 The domain of attraction condition .
. .
2.4.2 Condition on the underlying distribution . .
. .
2.4.3 The historical approach . .
2.4.4 Examples . .
. .
. .
2.4 The (Extremal) Weibull Case: γ < 0 .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
.
xi
1
1
3
3
14
19
19
21
24
31
32
40
42
42
45
46
51
56
56
57
58
58
61
65
65
67
67
67
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
v
vi
.
. .
. .
. .
. .
. .
2.5 The Gumbel Case: γ = 0 .
. .
. .
2.5.1 The domain of attraction condition .
. .
2.5.2 Condition on the underlying distribution . .
. .
2.5.3 The historical approach and examples . .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
2.6 Alternative Conditions for (Cγ )
. .
2.7 Further on the Historical Approach . .
2.8 Summary . .
. .
. .
. .
. .
2.9 Background Information . .
. .
Inverse of a distribution . .
. .
2.9.1
2.9.2
Functions of regular variation .
2.9.3 Relation between F and U . .
. .
2.9.4
Proofs for section 2.6 .
.
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
3 AWAY FROM THE MAXIMUM
. .
Introduction .
. .
. .
. .
. .
. .
. .
. .
. .
.
3.1
3.2 Order Statistics Close to the Maximum .
.
3.3 Second-order Theory . .
.
.
.
.
.
.
.
.
. .
3.3.1 Remainder in terms of U .
3.3.2 Examples . .
. .
3.3.3 Remainder in terms of F .
. .
. .
. .
. .
. .
3.4 Mathematical Derivations
Proof of (3.6) . .
Proof of (3.8) . .
Solution of (3.15)
Solution of (3.18)
. .
. .
. .
. .
. .
. .
. .
. .
. .
3.4.1
3.4.2
3.4.3
3.4.4
.
. .
. .
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
CONTENTS
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
69
69
72
72
73
75
76
76
77
77
79
80
83
83
84
90
90
92
93
94
95
96
97
98
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
Properties . .
4.1 A Naive Approach .
.
4.2 The Hill Estimator
. .
. .
4.2.1 Construction . .
4.2.2
. .
4 TAIL ESTIMATION UNDER PARETO-TYPE MODELS
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
4.3 Other Regression Estimators . .
4.4 A Representation for Log-spacings and Asymptotic Results . .
. .
4.5 Reducing the Bias
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
First-order estimation of quantiles and return periods
. .
Second-order refinements
. .
. .
. .
. .
4.6 Extreme Quantiles and Small Exceedance Probabilities
. .
4.7 Adaptive Selection of the Tail Sample Fraction .
. .
. .
4.5.1 The quantile view .
. .
4.5.2 The probability view . .
. .
. .
. .
. .
. .
4.6.1
4.6.2
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
.
.
5 TAIL ESTIMATION FOR ALL DOMAINS OF ATTRACTION
. .
. .
. .
5.1 The Method of Block Maxima .
. .
Parameter estimation . .
5.1.1 The basic model
5.1.2
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
99
. . 100
. . 101
. . 101
. . 104
. . 107
. . 109
. . 113
. . 113
. . 117
. . 119
. . 119
. . 121
. . 123
131
. . 132
. . 132
. . 132
CONTENTS
vii
. .
. .
. .
. .
. .
. .
. .
.
.
. .
. .
Pickands estimator .
5.1.3 Estimation of extreme quantiles .
5.1.4
.
Inference: confidence intervals .
5.2 Quantile View—Methods Based on (Cγ )
. .
. .
. .
. .
. .
. .
5.2.1
. .
5.2.2 The moment estimator .
. .
5.2.3 Estimators based on the generalized quantile plot
5.3 Tail Probability View—Peaks-Over-Threshold Method .
. .
. .
5.4 Estimators Based on an Exponential Regression Model
5.5 Extreme Tail Probability, Large Quantile and Endpoint Estimation
. .
Parameter estimation . .
5.3.1 The basic model
5.3.2
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. . 135
. . 137
. . 140
. . 140
. . 142
. . 143
. . 147
. . 147
. . 149
. . 155
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
. .
.
.
. .
Using Threshold Methods
.
5.5.1 The quantile view .
. .
5.5.2 The probability view . .
5.5.3
. .
. .
. .
5.6 Asymptotic Results Under (Cγ )-(C∗
γ )
. .
5.7 Reducing the Bias
. .
. .
. .
. .
Inference: confidence intervals .
.
. .
. .
. .
. .
5.7.1 The quantile view .
. .
5.7.2 Extreme quantiles and small exceedance
. .
5.8 Adaptive Selection of the Tail Sample Fraction .
. .
5.9 Appendices .
. .
. .
. .
. .
. .
5.9.1
5.9.2
. .
5.9.3 GRV2 functions with ρ < 0 . .
5.9.4 Asymptotic mean squared errors
5.9.5 AMSE optimal k-values . .
. .
.
Information matrix for the GEV .
.
Point processes .
.
. .
. .
. .
. .
. .
. .
probabilities
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. . 156
. . 156
. . 158
. . 159
. . 160
. . 165
. . 165
. . 167
. . 167
. . 169
. . 169
. . 169
. . 171
. . 172
. . 173
177
. . 177
. . 188
. . 189
. . 191
. . 195
. . 198
. . 200
209
. . 210
. . 211
. . 211
. . 212
. . 213
. . 216
6 CASE STUDIES
.
. .
. .
. .
. .
6.1 The Condroz Data
. .
6.2 The Secura Belgian Re Data . .
. .
. .
. .
. .
. .
6.2.1 The non-parametric approach .
6.2.2
. .
. .
6.2.3 Alternative extreme value methods .
6.2.4 Mixture modelling of claim sizes . .
. .
Pareto-type modelling .
6.3 Earthquake Data
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
7 REGRESSION ANALYSIS
. .
. .
. .
. .
Introduction .
7.1
. .
7.2 The Method of Block Maxima .
. .
. .
.
. .
.
. .
7.2.1 Model description .
.
. .
7.2.2 Maximum likelihood estimation .
7.2.3 Goodness-of-fit .
. .
.
7.2.4 Estimation of extreme conditional quantiles
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
viii
CONTENTS
7.3 The Quantile View—Methods Based on Exponential Regression
.
. .
. .
. .
. .
. .
Models
. .
.
. .
7.3.1 Model description .
.
. .
7.3.2 Maximum likelihood estimation .
7.3.3 Goodness-of-fit .
. .
.
7.3.4 Estimation of extreme conditional quantiles
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
7.4 The Tail Probability View—Peaks Over Threshold (POT)
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
Method .
. .
. .
. .
7.4.1 Model description .
.
. .
. .
7.4.2 Maximum likelihood estimation .
. .
. .
7.4.3 Goodness-of-fit .
.
. .
7.4.4 Estimation of extreme conditional quantiles
. .
. .
7.5.1 Maximum penalized likelihood estimation .
. .
7.5.2 Local polynomial maximum likelihood estimation .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
7.6 Case Study .
7.5 Non-parametric Estimation .
. .
. .
.
8 MULTIVARIATE EXTREME VALUE THEORY
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
Introduction .
8.1
. .
8.2 Multivariate Extreme Value Distributions . .
. .
. .
8.2.1 Max-stability and max-infinite divisibility .
. .
. .
8.2.2 Exponent measure .
. .
Spectral measure . .
8.2.3
. .
Properties of max-stable distributions . .
8.2.4
. .
. .
. .
8.2.5 Bivariate case . .
. .
8.2.6 Other choices for the margins .
. .
. .
8.2.7
. .
. .
. .
. .
. .
. .
. .
. .
Summary measures for extremal dependence . .
. .
. .
. .
. .
. .
. .
. .
. .
. .
8.6.1 Computing spectral densities
. .
8.6.2 Representations of extreme value distributions .
. .
8.3 The Domain of Attraction .
8.3.1 General conditions .
. .
8.3.2 Convergence of the dependence structure . .
. .
. .
. .
. .
8.4 Additional Topics . .
8.5 Summary . .
. .
. .
8.6 Appendix . .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
. .
. .
.
.
.
.
9 STATISTICS OF MULTIVARIATE EXTREMES
Introduction .
9.1
. .
9.2 Parametric Models
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
9.2.1 Model construction methods . .
9.2.2
. .
. .
. .
. .
. .
Some parametric models . .
. .
9.3.1 Non-parametric estimation .
. .
9.3.2
9.3.3 Data example . .
. .
Parametric estimation .
. .
9.3 Component-wise Maxima
. .
. .
.
.
.
.
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. . 218
. . 218
. . 219
. . 222
. . 223
. . 225
. . 225
. . 226
. . 229
. . 231
. . 233
. . 234
. . 238
. . 241
251
. . 251
. . 254
. . 254
. . 255
. . 258
. . 265
. . 267
. . 271
. . 273
. . 275
. . 276
. . 281
. . 287
. . 290
. . 292
. . 292
. . 293
297
. . 297
. . 300
. . 300
. . 304
. . 313
. . 314
. . 318
. . 321
CONTENTS
. .
. .
. .
. .
. .
. .
9.4 Excesses over a Threshold .
Parametric estimation .
. .
. .
. .
9.4.1 Non-parametric estimation .
9.4.2
. .
. .
9.4.3 Data example . .
9.5 Asymptotic Independence
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
9.5.1 Coefficients of extremal dependence . .
. .
9.5.2 Estimating the coefficient of tail dependence . .
. .
9.5.3
. .
. .
Joint tail modelling .
. .
. .
9.6 Additional Topics . .
9.7 Summary . .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
. .
.
.
.
.
.
. .
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
10.3 Point-Process Models . .
10.1 Introduction .
. .
10.2 The Sample Maximum .
10 EXTREMES OF STATIONARY TIME SERIES
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
. .
.
. .
.
10.2.1 The extremal limit theorem . .
.
. .
10.2.2 Data example . .
. .
.
. .
10.2.3 The extremal index .
.
. .
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
.
. .
10.5.1 The extremal limit theorem . .
.
10.5.2 The multivariate extremal index .
10.5.3 Further reading .
.
.
. .
. .
. .
. .
10.3.1 Clusters of extreme values .
10.3.2 Cluster statistics
. .
10.3.3 Excesses over threshold . .
. .
10.3.4 Statistical applications .
. .
. .
10.3.5 Data example . .
. .
10.3.6 Additional topics . .
. .
. .
. .
. .
. .
10.4 Markov-Chain Models .
. .
. .
. .
10.4.1 The tail chain . .
. .
. .
. .
10.4.2 Extremal index .
. .
. .
. .
10.4.3 Cluster statistics
10.4.4 Statistical applications .
. .
10.4.5 Fitting the Markov chain . .
. .
10.4.6 Additional topics . .
10.4.7 Data example . .
. .
. .
.
. .
. .
10.5 Multivariate Stationary Processes
10.6 Additional Topics . .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
11 BAYESIAN METHODOLOGY IN EXTREME VALUE
. .
. .
STATISTICS
11.1 Introduction .
. .
11.2 The Bayes Approach . .
11.3 Prior Elicitation .
. .
11.4 Bayesian Computation .
11.5 Univariate Inference . .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
ix
. . 325
. . 326
. . 333
. . 338
. . 342
. . 343
. . 350
. . 354
. . 365
. . 366
369
. . 369
. . 371
. . 371
. . 375
. . 376
. . 382
. . 382
. . 386
. . 387
. . 389
. . 395
. . 399
. . 401
. . 401
. . 405
. . 406
. . 407
. . 408
. . 411
. . 413
. . 419
. . 419
. . 421
. . 424
. . 425
429
. . 429
. . 430
. . 431
. . 433
. . 434
x
11.5.1 Inference based on block maxima . .
. .
11.5.2 Inference for Fr´echet-Pareto-type models . .
11.5.3 Inference for all domains of attractions .
. .
. .
. .
11.6 An Environmental Application .
. .
.
. .
. .
. .
Bibliography
Author Index
Subject Index
CONTENTS
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. . 434
. . 435
. . 445
. . 452
461
479
485