5
Systems Engineering | Theory & Practice
Vol.29, No.5
May, 2009
29
2009
5
: 1000-6788(2009)05-0137-05
! "$#$%&$'
576*8
030024)
,
,
,
,
9:
-/.,0
(*),+
1,243
(9:;<=?>A@CBDEFG?>H
, XPYNZ
r{N
]N¥R¦N§NN¨N©
OR[N\P]R^N_N`NaNbNc
kRuNvNwNxPyRzN{N|NzN}N~N
]U
VRW
rR
NN®N¯PVRW
. ªN«N¬Np
; N®N¯
; |NzN}N~N
A
,
VRWP]RPRU
^N_N`NaP¤
JLKNMPORQPSRTNUPVRW
mNn
, oNpPeRfNgNhNiNqPrRsNt
, eRPZ
¡N¢P£
cP]
N
¹NºN»
¿NÀNÁNÂNÃ
TP13
eRfNgNhNiNjPk½¼¾wNxPyRz
.
ÄNÅNÆNÇNÈ
.
dPeRfNgNhNiNjPkRl
NNNNN]P
, NPZ
fN°PZR±N²N³P´
^N_N`NaNb
VRWNNN^NP
N]R
RNN
, mNµN¶P·
ZR¸
,
Scheme of sliding mode control based on modied particle swarm
optimization
CHEN Zhi-mei, MENG Wen-jun, ZHANG Jing-gang, ZENG Jian-chao
(School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)
Abstract A new scheme of sliding mode control (SMC) for a class of non-linear systems is presented. The
parameters of switching function and exponential reaching law are designed with modied particle swarm
intelligent optimization (MPSO) by combining SMC with MPSO, which accelerates the reaching velocity
and improves the dynamic behavior and robustness. It can not only track the desired trajectory quickly
and accurately, but also eliminate the high frequency chattering inherent in sliding mode control. The
presented scheme is applied to the inverted pendulum system and the simulation results show the validity
of it.
Keywords modied particle swarm optimization; switching function; exponential reaching law; inverted
pendulum
1 ÉËÊ
,
ÌRÍNÎNÏNÐNÑNÒNÓNÔNÕNÖN×NØNÙNÚ
, ÓNÔNÛNØNÜNÝ
ìNòNóNôNõNÐNöN÷NøNùNúNõûNüý
, íNîNïNðNñ
õNì
õNÓNÔ
î
NN
0å
*àá
+
,.-
/
)
1
2
3
ÌÍ
@
A
B
C
6
D
2
F
LNMPORQ
SNTNUPV
WNXNYPZR[N\N]N^N_
`NaNbNc
dNeNf
çèá
/
G
hNiNjNkNl
mNnNoNpNq
(2008011027-3)
: 2008-04-12
(1970{),
rNsNt
?
E
.
;
,
,
,
,
:
:
, ßNàNá
ÓNÔNâNãNäNåNæ
NÞ
, þNÿ
ÎNÏNÐNÑNÒNÓNÔN×NØNõ
ÿ
4
5çè
6
7
8
9
:
;
Î
H
I
J
÷øÎìÏ
ãNÎNì
NNçNèNéNêNë
ÎNÏNÐNÑNÒNÓNÔNõ
ï
ù(Nõ
"!$#%&'
õ
?
=
>
Þ
<
õ
Ký
*
Dá
,
,
,
,
oNpNuPvRwNxNyNzN{
,
|P}R~NNzN{N
.
I
k
b
V
z
Z
b
U
Ï
è
î
ì
è
è
(
g
29
NóNô
,
_s(x) = "sgn(s) ks,
,
.
,
"
k
¶
9:;
k,
'«
©ª
NÎNÏNÓNÔNõNûNüNý
°µ
ÎNìNÏ
½D-
*¼«
ÆÇÈÉNô
.
Å
ôNøÎNõ
¦ÏÐ
DNNNçNè
NõÝ
óNô¡Ã
, áÜ
=>
ÛNØæ
óô
é
ä
1åä
ò
ô
õ
ö
÷õÏ
øò
ì
)
ù
ÛNØ
õ
ÿNé
êëì
ÜNÝNã
Ï
,
¦NöNÛNØ
ÍNëêëìù
ÎHINõ¤
£
/G
²*
NÎNÏNÓNÔ
,$ÖNá
[37],
,
.
,
.
138
~
.
,
;
,
,
,
.
,
.
"
jsj
0
[1]
ÍNô
" ò
*«
·¸
®¯
ÑÒ
,
9:;
,
çNèÓ
ÎNÏ
,
ß6NÞ
ÎNÏNÐNÑNÒ
ê
ë
ì
2üNá
õNûNüNý
",
è>
/=>
õ
õ
,
. î
/G
k õ ¡¢
õ£¤NýNò¥NÔ
¦Nø§¨¥NÔ
/G
9:;
ãNÎNìNÏ
jsj < 1
®NNNçNèNë
®¯°
±
¬D
²*³´
õNÓNÔ»A
¤A
,
1Ná
'µ®6°µ¹º
&9:;
õÂ
ôNòNô
ý¦NõÄ
¡Ã
.
ÿ=>NN
¾¿ÀÁ
Nô
ÎNÏ
ËÌ
[2] î
" ëÊ
2ÍN
k õ
Nô
",$ÖNá
9
:×
Ø
ÔÕ
,$ÙÚÛ
õÝ
ôàNØ
ÑÒ
Nö
õNý¦
ÛNØãNå
9NN
N",
N
áâ
õ
ð
ÛØ
öר
ÿá
é
î
ï
í
ñ
ò
'
è
é
¦Nõúû
ôNúNö
ýNòËýþK
ø§ÿ
ßÊ
µ
õNòNóNô
NÙNÚNõNöNÛNØ
, º
2
î
áâ
¤A£
ÛNØNõNÎNÏNÐNÑNÒNÓÔN×
,
ÍNëêëì
éîï
ÎNÏNÐNÑNÒNÓNÔN×NØNÑÂ
ôNò
ÛNØNöNÕNÖ
óNô
,
êëì
æN÷Nø»ûNüýNò! Nõý¦
¨ÿ
0
è>
NÓNÔNò
ìJ
õ"#
.
$&%&'&(
÷Nø
ÚÛ
î
ó
ÛNØN÷Ný
,
9:;
¿ÀÁ
[811].
1995
2
,
.
,
,
,
,
)
ENýNõ*+NýNÓNÔ
8>>>><
>>>>:
_x1 = x2
_x2 = x3
...
_xn = f (x) + b(x)u + d(t)
f (x; t) = ^f(x; t) + f (x; t)
,NÕ
(1)
(2)
(3)
(4)
(5)
2",
=>?
VWX
n -./0132
, 56GFIH9J
r = [xr; _xr; ; x(n1)
xT
, d(t) 4BCDE
x = [x1; x2; ; xn]T
)@A
./0YZ
, u 4
K
], @[\]132
eT = (e; _e; ; e(n1))
r
.5678
, ^f (x; t) 9
)@ALBMDE.NOP
f (x; t) .:;<
, f (x; t) 4
, QRS/0T1!2U
9RS/0_`abc4
= (xr x1; _xr _x1; ; x(n1)
r
x(n1)
1
)
= (e1; e2; ; en)
_e1 = e2
_e2 = e3
...
_en = f (x) b(x)u d(t) + xn
r
8>>>><
>>>>:
defghi
jk
, dlmi
s(e) = Ce =
n
Xi=1
ciei(t) = c1e1(t) + c2e2(t) + + en(t)
c1, c2, , cn1 Qnopqr-stu
(cn ?vwx
1).
A4
ì
ì
1
ì
¢
õ
¬
õ
è
õ
£
ì
è
õ
Ð
±
&
õ
ì
õ
Á
Á
ô
Í
õ
1
Þ
æ
Á
Þ
á
õ
ç
õ
8
Í
õ
ï
ç
ð
2
Ñ
Ò
õ
ò
Í
å
¸
A
D
á
(
ì
,
'
â
õ
¯
J
?
^
j
5z
i
,
(5)(6) a
{}|}~
,
: }}}}}
}}}}}}}}}}
_s(e) = "sgn(s) ks;
" > 0;
k > 0
_s(e) = "sgn(s) ks = C 0e + _en = C 0e ^f (x) b(x)u d(t) + x(n)
r
, C 0 = [0; c1; c2; ; cn1]
5624
u = b1(x)[C 0e ^f(x) d(t) + x(n)
r + "sgn(s) + ks]
3
_°
56
&&&& &¡£¢¥¤¥¦£§¥¨¥©£ª¥«
4¬®¯S
_°±;.²
, Á
. ÈÉÊËÌ3Í
, g(s) = 1es
Ô
QÂÃÄ.ÅÆÂ·Ç
1+es > 1.
i C 0× " L
(9) k
.Ö
n -áâéê
, ñòÝÞóô
, Õ
k ØÙ
wåëìí
ãäååæçè
9J
3åæ
@ÝÞñò
Jéê
i å
½¾
±ù
Xi = (xi1; xi2; ; xin) 4
i .úûßà
Vi = (vi1; vi2; ; vin) 4
i .úûñòÝÞ
i
Pi = (pi1; pi2; ; pin) 4
õü.ý
hi
<
hi
J(X) 4
4¬ _
Pi(t + 1) =( Pi(t);
s, ¿
½¾
½¾
½¾
½¾
<
þ
Xi(t + 1);
½¾
, ±
, Õ
.
.
139
(6)
(7)
(8)
°.²
56
(9)
,
,
(10)
(11)
(12)
(13)
.
(14)
J.³´
fhi
,µ¶·¸
g(s) ÎÏÐÑ
w¹º
hi
^»¼½¾¿À
(8) »Ó
, Ò
u = b1(x)[C 0e ^f (x) d(t) + x(n)
r + "g(s) + ks]
½¾¿À
2L
. ½¾¿À
°ÚÛ±;
æî
, äå
½¾
½¾
òE0÷ø
ñòõö
ñòõöL
°ÜÊÝÞ
Îïéê.
[7].
-ßàáâ
wåðd
=>
, ½
ßà
. Õ
þ
Û
.
ìþÿ
, Ò
½¾
<.ßà
þÿ
i .úû
,
4
ßà
åæþÿ
j
if J(Xi(t + 1)) J(Pi(t))
if J(Xi(t + 1)) < J(Pi(t))
þÿ
õÙ.
ßà4
,
Pg(t),
4
ì
þÿ
.
ßà
Pg(t) 2 fP0(t); P1(t); ; Ps(t)g jf (Pg(t)) = min ff (P0(t)); f (P1(t)); ; f (Ps(t))g
½¾¿À
ì
4¬
.C
Û_`bc4vij (t + 1) = !(t)vij (t) + r1j (t)(pij (t) xij (t)) + r2j(t)(pgj (t) xij(t))
.
°J
°.
, »¼½¾¿À
mi
, Ø
0 2 ê
, \i" ï
å
i, t ïù
t Î
. × 4ÝÞ
, e
!(t) = 0:9
t
. !(t) 4"A#
Ôi
hi
Gmax
.
0:5
, vij 2 [vmax; vmax],
xij (t + 1) = xij(t) + vij (t + 1)
½¾
. !
!(t) 4)Î
½¾
,
.ù
þ$%&
, \j" ï
j -
r1 U (0; 1), r2 U (0; 1) 4
Gmax 4
éê.aA
, Òa±@
½¾¿À
8Û
<=
, vij Ø
°ÚÛ±;²
(¿
äå
¿½¾
½¾
m/
1)
2)
'("A#
@0213
i67
4 m),
hi
56Ö
æ9=
; ±
vmax = xmax; 0:1 1:0.
, 4¬+,J
*B
45.áâéê
ÛÙ`
@J
½¾-.
[xmax; xmax]
áâ
:
4P
:; !ßàLÝÞ
2X eTe
J =
1
;
(15)
y
j
k
=
k
K
=
j
4
k
^
j
k
.
.
¾
w
¿
æ
¼
4
^
F
H
.
ÿ
Á
Û
F
H
P
@
±
¿
æ
k
.
i
4
æ
k
ì
W
ý
W
ý
¼
k
m
J
e
<
i
í
Î
i
í
.
¼
k
@
^
w
/
3
=
w
.
Þ
F
H
4
140
e
hi
>@?@A@B@C@DFE@G@H
Ff it =
1
J
pbest ;
gbest ;
äå
äå
, ã
, ã
½¾
3) Õ
½¾
4) Õ
5) óô_`
45PÃÂQRST
6)
(12)× (13)× (14)
õÙ.
<J
<J
½¾
OÛ
4pU
(Ø
þÿ
ßà
þÿ
ßà
õü.
.ÝÞLßà
pbest èLKM
,
gbest è2KN
;
29
(16)
45
,
ÿ
45
, Ò
ÿ
ãè
ã
, Ò
4úû.
±à
þÿ
þÿ
ßà
ßà
<VÃÂ Gmax), ÒW2X
2),
YZ[\
.
]_^_`_a_b
cd
Lyapunov hi
V = 1
2 s2, Ò
= "s g(s) ks2
_V = s _s = s[C 0e ^f(x) b(x)u d(t) + x(n)
] = s["g(s) ks]
r
, 0 < g(s) < 1; ú
(9) è
, ²E
ÊP
s < 0
, 1 < g(s) < 0,
.
JgaÃ
" > 0, k > 0,
,
_V < 0.
*a
4
5
s > 0
(4), J56
h_i_j_k
lmn
RS
,
oE_`4
_x1 = x2
_x2 =
3
l 4
, x2 4qÝÞ
g sin x1
mlx2
2 cos x1 sin x1
mc + m
m cos2 x1
mc + m
+
cos x1
mc + m
l(
4
3
m cos2 x1
mc + m
)
u + d(t)
np
, g = 9:8m=s2
jk
, x1 4
.qÞ
nr
, u 456
, l = 0:5m 9
.Æ2
@A f = 0:5 sin(t). ±RS.8<4
, = 5, e
½¾¿
_w
4y
4
3 Ly
4y
c1 = 10:0000, k = 7:0002, " = 0:8001,
, t
ws
= = 2, = 0:8, ¿
.
.Æ2
, mc = 1kg 4
ÝÞ
[15; 15], BCuD
[x; _x] = [pi=20; 0], WX
ßàÌNv4
4 m = 30, Gmax = 20.
hi
2
1
OÛ4y
l
, m = 0:1kg 4
), ?
d(t) = 25 exp( (t10)2
xr = sin(t). óôµ¶.56
, RSU
ÌNvL\]ÌNv
ÚÛ±;Â
æ9=
.
þx
2
1
{}|}~}}}}
2
}}
}}|}~}}}}}
y
I
Þ
4
m
ÿ
.
4
ú
e
e
f
Õ
^
R
S
=
0
K
4
í
n
.
è
Ê
P
/
4
Ö
i
Ö
i
Þ
V
z
z
5z
{}|}~
,
: }}}}}
}}}}}}}}}}
141
(
,
3
G}}}z}
}}}}
, Ö
Q5a
, RSݤ
}}}}}
Â
VWX
Ú<
./0YZ
)
4
(ù
.
3 Î
), ?
}}}}}
¬RS.Ç E¡¢
ȣ
,
g
»¼½¾¿À
E0«
Ù`
®¬¯S²
°±;
kN¬
56RS
fghi
ì®
,
¨
¯_w
?
.
ì°±
,
¬RSÂò©ª.ÝÞ
,
®Ç E
.
g
ȣ
, Q
RS.A
J.ÅÆ56LÇ Enê.³´
¬RS.A
6
¥_¦
µ¶§Ê
RSJø
, ÿ±
²³´µ
¶}}·
[1]
.
¸}¹}º}}}C}D}}»
[M].
:
, 1990.
¼}½
¾}¿}À}Á}Â}Ã}Ä}Å}Æ
Gao W B. Variable Structure Control Theory[M]. Beijing: China Science and Technology Publishing House,
1990.
[2]
Ç}È}É
.
,
Ê}Ë}Ì
Í}Î}Ï}Ð}Ñ}Ò}>}?}}¸}¹}º}}
[J].
Ó}Ô}Õ}Ö}×}Á}Á}Ø
Zhai C L, Wu Z M. A variable structure of control of discrete-time systems change[J]. Journal of Shanghai
Jiaotong University, 2000, 34(5): 719{722.
, 2000, 34(5): 719{722.
[3] Kambiz F, Mahdi J K. Genetic algorithms based fuzzy sliding mode control with application to building struc-
tures[J]. ICAISC 2004, LNAI3070, 960{965.
[4] Lin F J, Chou W D. An induction motor servo drive using sliding-mode controller with genetic algorithm[J].
Electronic Power Systems Research, 2003, 64: 93{108.
[5] Zhang C F, Wang Y N, He J. GA-NN-integrated sliding-mode control system and its application in the printing
press[J]. Control Theory & Applications, 2003, 20(2): 217{222.
[6] Mahdi J K, Hossein R. Fuzzy sliding mode control of robotic manipulators based on genetic algorithms[J]. MICAI,
2004, LNAI2972: 892{900.
[7] Lii G R, Chiang C L, Su C T, et al. An induction motor position controller optimally designed with fuzzy
phase-plane control and genetic algorithms[J]. Electronic Power Systems Research, 2004, 68: 103{112.
[8]
Ù}Ú}Û
,
Þ}|}ß
. }
}}}
Ü}Ý
[M].
:
, 2004.
¼}½
À}Á}Ä}Å}Æ
Zeng J C, Jie J, Cui Z H. Particle Swarm Optimization[M]. Beijing: Science Press, 2004.
[9] Ghoshal S P. Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation
control[J]. Electronic Power Systems Research, 2004, 72: 203{212.
Xiong W L, Xu B G, Zhou Q M. Study on optimization of PID parameter based on improved PSO[J]. Computer
Engineering, 2005, 31(24): 41{43.
è}é}ê}ë}}}ì}í
[J].
î}}ï}A}B
, 2005, 31(24): 41{43.
[10]
[11]
à}á}â
ã}ä}¿
,
å}æ}ç
, }}}}}
}}}} PID
,
¼}½
.
:
,
,
ð}ñ}á
[M].
Wang D W, Wang J W, Wang H F, et al.
Publishing House, 2007.
Ë}ö}ê}ë}}
ò}ô}õ
ò}ó}á
, 2007.
¶}}÷}ø}Ä}Å}Æ
Intelligent Optimization Methods[M]. Beijing: Higher Education
,
,
y
z
z
ç
¸
i
þ
U
R
i
å
Ö
i
å
ý
A
=
k
K