logo资料库

Classical book---Quantum Optics An Introduction.pdf

第1页 / 共397页
第2页 / 共397页
第3页 / 共397页
第4页 / 共397页
第5页 / 共397页
第6页 / 共397页
第7页 / 共397页
第8页 / 共397页
资料共397页,剩余部分请下载后查看
OXFORD MASTER SERIES IN PHYSICS
OXFORD MASTER SERIES IN PHYSICS The Oxford Master Series is designed for final year undergraduate and beginning graduate students in physics and related disciplines. It has been driven by a perceived gap in the literature today. While basic undergraduate physics texts often show little or no connection with the huge explosion of research over the last two decades, more advanced and specialized texts tend to be rather daunting for students. In this series, all topics and their consequences are treated at a simple level, while pointers to recent developments are provided at various stages. The emphasis is on clear physical principles like symmetry, quantum mechanics, and electromagnetism which underlie the whole of physics. At the same time, the subjects are related to real measurements and to the experimental techniques and devices currently used by physicists in academe and industry. Books in this series are written as course books, and include ample tutorial material, examples, illustrations, revision points, and problem sets. They can likewise be used as preparation for students starting a doctorate in physics and related fields, or for recent graduates starting research in one of these fields in industry. CONDENSED MATTER PHYSICS 1. M. T. Dove: Structure and dynamics: an atomic view of materials 2. J. Singleton: Baud theory and electronic properties of solids 3. A. M. Fox: Optical properties of solids 4. S. J. Blundell: Magnetism in condensed matter 5. J. F. Annett: Superconductivity 6. R. A. L. Jones: Soft condensed matter ATOMIC, OPTICAL, AND LASER PHYSICS 7. C. J. Foot: Atomic Physics 8. G. A. Brooker: Modern classical optics 9. S. M. Hooker, C. E. Webb: Laser physics 15. A. M. Fox: Quantum optics: an introduction PARTICLE PHYSICS, ASTROPHYSICS, AND COSMOLOGY 10. D. H. Perkins: Particle astrophysics 11. Ta-Pei Cheng: Relativity, gravitation, and cosmology STATISTICAL, COMPUTATIONAL, AND THEORETICAL PHYSICS 12. M. Maggiore: A modern introduction to quantum field theory 13. W. Krauth: Statistical mechanics: algorithms and computations 14. J. P. Sethna: Entropy, order parameters, and complexity
Quantum Optics An Introduction MARK FOX Department of Physics and Astronomy University of Sheffield 1
3 Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York c Oxford University Press 2006 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2006 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Fox, Mark (Anthony Mark) Quantum optics : an introduction/Mark Fox. p. cm. — (Oxford master series in physics ; 6) Includes bibliographical references and index. ISBN-13: 978–0–19–856672–4 (hbk. : acid-free paper) ISBN-10: 0–19–856672–7 (hbk. : acid-free paper) ISBN-13: 978–0–19–856673–1 (pbk. : acid-free paper) ISBN-10: 0–19–856673–5 (pbk. : acid-free paper) 1. Quantum optics. QC446.2.F69 2006 535.15—dc22 II. Series. I. Title. 2005025707 Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Antony Rowe, Chippenham ISBN 0–19–856672–7 ISBN 0–19–856673–5 (Pbk.) 978–0–19–856672–4 978–0–19–856673–1 (Pbk.) 10 9 8 7 6 5 4 3 2 1
Preface Quantum optics is a subject that has come to the fore over the last 10–20 years. Formerly, it was regarded as a highly specialized discipline, acces- sible only to a small number of advanced students at selected universities. Nowadays, however, the demand for the subject is much broader, with the interest strongly fuelled by the prospect of using quantum optics in quantum information processing applications. My own interest in quantum optics goes back to 1987, when I attended the Conference on Lasers and Electro-Optics (CLEO) for the first time. The ground-breaking experiments on squeezed light had recently been completed, and I was able to hear invited talks from the lead- ing researchers working in the field. At the end of the conference, I found myself sufficiently interested in the subject that I bought a copy of Loudon’s Quantum theory of light and started to work through it in a fairly systematic way. Nearly 20 years on, I still consider Loudon’s book as my favourite on the subject, although there are now many more available to choose from. So why write another? The answer to this question became clearer to me when I tried to develop a course on quantum optics as a submodule of a larger unit entitled ‘Aspects of Modern Physics’. This course is taken by under- graduate students in their final semester, and aims to introduce them to a number of current research topics. I set about designing a course to cover a few basic ideas about photon statistics, quantum cryptography, and Bose–Einstein condensation, hoping that I would find a suitable text to recommend. However, a quick inspection of the quantum optics texts that were available led me to conclude that they were generally pitched at a higher level than my target audience. Furthermore, the majority were rather mathematical in their presentation. I therefore reluctantly concluded that I would have to write the book I was seeking myself. The end result is what you see before you. My hope is that it will serve both as a useful basic introduction to the subject, and also as a tasty hors d’oeuvre for the more advanced texts like Loudon’s. In developing my course notes into a full-length book, the first prob- lem that I encountered was the selection of topics. Traditional quantum optics books like Loudon’s assume that the subject refers primarily to the properties of light itself. At the same time, it is apparent that the subject has broadened considerably in its scope, at least to many people working in the field. I have therefore included a broad range of topics that probably would not have found their way into a quantum optics text 20 years ago. It is probable that someone else writing a similar text
vi Preface would make a different selection of topics. My selection has been based mainly on my perception of the key subject areas, but it also reflects my own research interests to some extent. For this reason, there are proba- bly more examples of quantum optical effects in solid state systems than might normally have been expected. Some of the subjects that I have selected for inclusion are still develop- ing very rapidly at the time of writing. This is especially true of the topics in quantum information technology covered in Part IV. Any attempt to give a detailed overview of the present status of the experiments in these fields would be relatively pointless, as it would date very quickly. I have therefore adopted the strategy of trying to explain the basic principles and then illustrating them with a few recent results. It is my hope that the chapters I have written will be sufficient to allow students who are new to the subjects to understand the fundamental concepts, thereby allowing them to go to the research literature should they wish to pursue any topics in more detail. At one stage I thought about including references to a good number of internet sites within the ‘Further Reading’ sections, but as the links to these sites frequently change, I have actually only included a few. I am sure that the modern computer-literate student will be able to find these sites far more easily than I can, and I leave this part of the task to the student’s initiative. It is a fortunate coincidence that the book is going to press in 2005, the centenary of Einstein’s work on the photoelectric effect, when there are many articles available to arouse the interest of students on this subject. Furthermore, the award of the 2005 Nobel Prize for Physics to Roy Glauber “for his contribution to the quantum theory of optical coherence” has generated many more widely-accessible information resources. An issue that arose after receiving reviews of my original book plan was the difficulty in making the subject accessible without gross over- simplification of the essential physics. As a consequence of these reviews, I suspect that some sections of the book are pitched at a slightly higher level than my original target of a final-year undergraduate, and would in fact be more suitable for use in the first year of a Master’s course. Despite this, I have still tried to keep the mathematics to a minimum as far as possible, and concentrated on explanations based on the physical understanding of the experiments that have been performed. I would like to thank a number of people who have helped in the var- ious stages of the preparation of this book. First, I would like to thank all of the anonymous reviewers who made many helpful suggestions and pointed out numerous errors in the early versions of the manuscript. Second, I would like to thank several people for critical reading of parts of the manuscript, especially Dr Brendon Lovett for Chapter 13, and Dr Gerald Buller and Robert Collins for Chapter 12. I would like to thank Dr Ed Daw for clarifying my understanding of gravity wave interferometers. A special word of thanks goes to Dr Geoff Brooker for critical reading of the whole manuscript. Third, I would like to thank Sonke Adlung at Oxford University Press for his support and patience
Preface vii throughout the project and Anita Petrie for overseeing the production of the book. I am also grateful to Dr Mark Hopkinson for the TEM pic- ture in Fig. D.3, and to Dr Robert Taylor for Fig. 4.7. Finally, I would like to thank my doctoral supervisor, Prof. John Ryan, for originally pointing me towards quantum optics, and my numerous colleagues who have helped me to carry out a number of quantum optics experiments during my career. Sheffield June 2005
分享到:
收藏