logo资料库

xilinx 10G mac.pdf

第1页 / 共204页
第2页 / 共204页
第3页 / 共204页
第4页 / 共204页
第5页 / 共204页
第6页 / 共204页
第7页 / 共204页
第8页 / 共204页
资料共204页,剩余部分请下载后查看
10 Gigabit Ethernet Subsystem v3.1
Table of Contents
IP Facts
Ch. 1: Overview
10G Ethernet MAC
10GBASE-R
10GBASE-KR
Feature Summary
Applications
Unsupported Features
Licensing and Ordering
License Checkers
License Type
Ch. 2: Product Specification
Standards
Performance
Resource Utilization
Latency
32-bit Datapath
Transmit Path Latency
Receive Path Latency
64-bit Datapath
Transmit Path Latency
Receive Path Latency
Port Descriptions
AXI4-Stream Transmit Interface
AXI4-Stream Receive Interface
Flow Control Interface (IEEE 802.3)
Priority Flow Control Interface (802.1Qbb)
Serial Data Ports
Optical Module Interface Ports
Clock and Reset Ports
Shared Logic Included in Example Design
Shared Logic Included in Core
Tx Buffer Bypass Manual Phase Alignment Ports
10GBASE-KR Training Interface
DRP Interface Ports
Zynq-7000, Virtex-7, and Kintex-7 Devices
UltraScale Architecture
PCS/PMA Miscellaneous Ports
Speeding up Simulation
Transceiver Debug Ports
AXI4-Lite Management Interface Ports
10G Ethernet MAC Configuration and Status Signals
Statistics Vector Signals
Transmit Statistics Vector
Receive Statistics Vector
PCS/PMA Configuration and Status Signals
BASE-R
BASE-KR
Interrupt Signal
IEEE 1588 Transmitted Timestamp Ports
IEEE 1588 Received Timestamp Ports
IEEE 1588 System Timer Ports
Time-of-Day (ToD) System Timer Format
Correction Field System Timer Format
Register Space
Statistics Counters
10G Ethernet MAC Configuration Registers
MDIO Control Registers
Interrupt Output Registers
PCS/PMA Register Map
MDIO Register 1.0: PMA/PMD Control 1
MDIO Register 1.1: PMA/PMD Status 1
MDIO Register 1.4: PMA/PMD Speed Ability
MDIO Registers 1.5 and 1.6: PMA/PMD Devices in Package
MDIO Register 1.7: 10G PMA/PMD Control 2
MDIO Register 1.8: 10G PMA/PMD Status 2
MDIO Register 1.9: 10G PMD Transmit Disable
MDIO Register 1.10: 10G PMD Signal Receive OK
MDIO Register 1.150: 10GBASE-KR PMD Control
MDIO Register 1.151: 10GBASE-KR PMD Status
MDIO Register 1.152: 10GBASE-KR LP Coefficient Update
MDIO Register 1.153: 10GBASE-KR LP Status
MDIO Register 1.154: 10GBASE-KR LD Coefficient Update
MDIO Register 1.155: 10GBASE-KR LD Status
MDIO Register 1.170: 10GBASE-R FEC Ability
MDIO Register 1.171: 10GBASE-R FEC Control
MDIO Register 1.172: 10GBASE-R FEC Corrected Blocks (Lower)
MDIO Register 1.173: 10GBASE-R FEC Corrected Blocks (Upper)
MDIO Register 1.174: 10GBASE-R FEC Uncorrected Blocks (Lower)
MDIO Register 1.175: 10GBASE-R FEC Uncorrected Blocks (Upper)
MDIO Register: 1.65520: Vendor-Specific LD Training
MDIO Register 1.65535: Core Version Info for 10G PCS/PMA Subcore
MDIO Register 3.0: PCS Control 1
MDIO Register 3.1: PCS Status 1
MDIO Register 3.4: PCS Speed Ability
MDIO Registers 3.5 and 3.6: PCS Devices in Package
MDIO Register 3.7: 10G PCS Control 2
MDIO Register 3.8: 10G PCS Status 2
MDIO Register 3.32: 10GBASE-R Status 1
MDIO Register 3.33: 10GBASE-R Status 2
MDIO Register 3.34–37: 10GBASE-R Test Pattern Seed A0–3
MDIO Register 3.38–41: 10GBASE-R Test Pattern Seed B0–3
MDIO Register 3.42: 10GBASE-R Test Pattern Control
MDIO Register 3.43: 10GBASE-R Test Pattern Error Counter
MDIO Register 3.65520: IEEE1588 Control
MDIO Register 3.65521: RX Fixed Latency, Integer ns
MDIO Register 3.65522: RX Fixed Latency, Fractional ns
MDIO Register 3.65535: 125 Microsecond Timer Control
MDIO Register 7.0: AN Control
MDIO Register 7.1: AN Status
MDIO Register 7.16:17:18: AN Advertisement
MDIO Register 7.19, 20, 21: AN LP Base Page Ability
MDIO Register 7.22, 23, 24: AN XNP Transmit
MDIO Register 7.25, 26, 27: AN LP XNP Ability
MDIO Register 7.48: Backplane Ethernet Status
Ch. 3: Designing with the Subsystem
Clocking
Resets
7 Series Clocking and Shared Logic
Shared Logic
Core Level Logic
UltraScale Device Clocking and Shared Logic Using the RX Elastic Buffer
GTHE3/GTYE3 (32-bit Datapath)
Shared Logic
Core Level Logic
GTHE3 with the 64-bit Datapath
UltraScale Device Clocking and Shared Logic Omitting the RX Elastic Buffer
Shared Logic
Core Level Logic
Shared Logic for 7 Series IEEE 1588 Support
Ethernet Protocol Description
Ethernet Sublayer Architecture
MAC and MAC CONTROL Sublayer
Physical Sublayers PCS, PMA, and PMD
Ethernet Data Format
Preamble
Start of Frame Delimiter
MAC Address Fields
MAC Address
Destination Address
Source Address
Length/Type
Data
Pad
FCS
Frame Transmission and Interframe Gap
Deficit Idle Count
Connecting the Data Interfaces
Transmit AXI4-Stream Interface
Normal Frame Transmission
In-Band Ethernet Frame Fields
Padding
Transmission with In-Band FCS Passing
Aborting a Transmission
Back-to-Back Continuous Transfers
Transmission of Custom Preamble
VLAN Tagged Frames
Transmitter Maximum Permitted Frame Length
Interframe Gap Adjustment
Deficit Idle Count (DIC)
Transmission of Frames During Local/Remote Fault or Link Interruption Reception
Receive AXI4-Stream Interface
Normal Frame Reception
Timing for a Good or a Bad Frame
Frame Reception with Errors
Reception with In-Band FCS Passing
Reception of Custom Preamble
VLAN Tagged Frames
Receiver Maximum Permitted Frame Length
Length/Type Field Error Checks
Enabled
Disabled
IEEE 1588 Timestamping
Transmit
Frame-by-Frame Timestamping Operation
Transmitter Latency and Timestamp Adjustment
Transmit – Providing the Command Field In-band
Transmit - Providing the Command Field Out-of-Band
Receive
Receiver Latency and Timestamp Adjustment
Receive – Timestamp In Line With Frame Reception
Connecting the Management Interface
MDIO Interface
MDIO Transaction Types
Set Address Transaction
Write Transaction
Read Transaction
Post-Read-Increment-Address Transaction
Using the AXI4-Lite Interface to Access PHY Registers over MDIO
IEEE 802.3 Flow Control
Flow Control Requirement
Flow Control Basics
IEEE 802.3 Pause Control Frames
Transmitting a Pause Control Frame
Core-Initiated Pause Request
XON/XOFF Extended Functionality
Client-Initiated Pause Request
Receiving a Pause Control Frame
Core-Initiated Response to a Pause Request
Client-Initiated Response to a Pause Request
Flow Control Implementation Example
Method
Operation
Priority Flow Control
Priority Flow Control Requirement
Priority-Based Flow Control Frames
Transmitting a PFC Frame
Core-Initiated Request
Client-Initiated Request
Receiving a PFC Frame
Core-Initiated Response to a PFC request
PFC Frame Reception Disabled
Pause Frame Reception Enabled
Client-Initiated Response to a Pause Request
PFC Implementation Example
Method
Operation
Receiver Termination
Special Design Considerations
Connecting Multiple Subsystem Instances (No IEEE 1588 Support)
Zynq-7000, Virtex-7, and Kintex-7 Devices
UltraScale Devices
Using Training and Auto-Negotiation with the Management Interface
Using Training and Auto-Negotiation with No Management Interface
Using FEC in the Subsystem with Auto-Negotiation
Using FIFOs in IP Integrator
Ch. 4: Design Flow Steps
Customizing and Generating the Subsystem
Component Name
Ethernet Standard
PCS/PMA Standard
AXI4-Stream datapath width
MAC Options
AXI4-Lite for Configuration and Status
AXI4-Lite Frequency (MHz)
Statistics Gathering
IEEE802.1Qbb Priority-based Flow Control
PCS/PMA Options
Auto-Negotiation
Forward Error Correction (FEC)
Exclude RX Elastic Buffer
DRP Clocking
Transceiver Type
Transceiver Location
Transceiver RefClk Location
Reference Clock Frequency (MHz)
IEEE 1588 Options
IEEE 1588 Hardware Timestamping Support
1588 Timer Format
Shared Logic
User Parameters
Output Generation
Constraining the Subsystem
Required Constraints
Device, Package, and Speed Grade Selections
Clock Frequencies
Clock Management
Clock Placement
Banking
Transceiver Placement
I/O Standard and Placement
Simulation
Synthesis and Implementation
Ch. 5: Example Design
Ethernet FIFO
RX FIFO
TX FIFO
Basic Pattern Generator Module
Address Swap
Pattern Generator
Pattern Checker
AXI4-Lite Control State Machine
Shared Logic and the Support Layer
Ch. 6: Test Bench 重要
DEMO Mode
BIST Mode
Changing the Test Bench
Changing Frame Data in Demo Mode
Changing Frame Length
Changing Frame Error Status
Appx. A: Upgrading
Migrating to the Vivado Design Suite
Upgrading in the Vivado Design Suite
Parameter Changes
Port Changes in Version 2.0
Ports Added in Version 3.0
Ports Changed in Version 3.0
Ports Changed in Version 3.1
Appx. B: Debugging
Finding Help on Xilinx.com
Documentation
Solution Centers
Answer Records
Technical Support
Debug Tools
Vivado Design Suite Debug Feature
Hardware Debug
General Checks
What Can Cause a Local or Remote Fault?
Local Fault
Remote Fault
Link Bring Up – Basic
High Level Link Up (10GBASE-R or 10GBASE-KR with Auto-Negotiation + Training Disabled)
Stage 1: Device A Powered Up, but Device B Powered Down
Stage 2: Device B Powers Up and Resets
Stage 3: Device A Receives Idle Sequence
Stage 4: Normal Operation
Link Bring Up—BASE-KR
Using the Configuration Vector for Link Bring-Up
Using the MDIO interface for Link Bring-Up
What Can Cause Block Lock to Fail?
What Can Cause the 10Gb PCS/PMA Core to Insert Errors?
Transceiver Specific Checks
Link Training
Appx. C: Additional Resources and Legal Notices
Xilinx Resources
Documentation Navigator and Design Hubs
References
Revision History
Please Read: Important Legal Notices
10 Gigabit Ethernet Subsystem v3.1 LogiCORE IP Product Guide Vivado Design Suite PG157 October 4, 2017
Table of Contents Chapter 1: Overview Feature Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Unsupported Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Licensing and Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 2: Product Specification Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Resource Utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Port Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Register Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter 3: Designing with the Subsystem Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Series Clocking and Shared Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 UltraScale Device Clocking and Shared Logic Using the RX Elastic Buffer . . . . . . . . . . . . . . . . . . . . 92 UltraScale Device Clocking and Shared Logic Omitting the RX Elastic Buffer . . . . . . . . . . . . . . . . . 97 Shared Logic for 7 Series IEEE 1588 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Ethernet Protocol Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Connecting the Data Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 IEEE 1588 Timestamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Connecting the Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 IEEE 802.3 Flow Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Priority Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Receiver Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Special Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Chapter 4: Design Flow Steps Customizing and Generating the Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Constraining the Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 2 Send Feedback
Synthesis and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Chapter 5: Example Design Shared Logic and the Support Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Chapter 6: Test Bench Appendix A: Upgrading Migrating to the Vivado Design Suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Upgrading in the Vivado Design Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Appendix B: Debugging Finding Help on Xilinx.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Debug Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Hardware Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Appendix C: Additional Resources and Legal Notices Xilinx Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Documentation Navigator and Design Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Please Read: Important Legal Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 3 Send Feedback
IP Facts Facts Table Subsystem Specifics 10GBASE-R: UltraScale™ Zynq®-7000 All Programmable SoC Virtex®-7, Kintex®-7(3) 10GBASE-KR: UltraScale™, Virtex-7(4) AXI4-Lite, AXI4-Stream Performance and Resource Utilization web page Provided with Subsystem Encrypted RTL Verilog Verilog Xilinx Design Constraint (XDC) Verilog or VHDL source HDL Model Linux Supported Device Family(1) (2) Supported User Interfaces Resources Design Files Example Design Test Bench Constraints File Simulation Model Supported S/W Driver Tested Design Flows(5) Design Entry Simulation Synthesis Vivado® Design Suite For supported simulators, see the Xilinx Design Tools: Release Notes Guide. Vivado Synthesis Support Provided by Xilinx at the Xilinx Support web page Notes: 1. For a complete list of supported devices, see the Vivado IP catalog. For new designs in the UltraScale/ UltraScale+™ portfolio, see the 10G/25G Ethernet Subsystem webpage. 2. For the listed 7 series families, only a -2 speed grade or faster is supported. 3. -2, -2L or -3. 4. GTHE2 transceivers only. 5. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide. ‘‘ Introduction The 10 Gigabit Ethernet subsytem provides a 10 Gigabit Ethernet MAC and PCS/PMA in 10GBASE-R/KR modes to provide a 10 Gigabit Ethernet port. The transmit and receive data interfaces use AXI4-Stream interfaces. An optional AXI4-Lite interface is used for the control interface to internal registers. Features • Designed to 10 Gigabit Ethernet specification IEEE Standard 802.3-2012 • AXI4-Stream protocol support on client TX and RX interfaces. 64-bit AXI4-Stream is available for all permutations. For 10GBASE-R in supported devices, 32-bit AXI4-Stream is available to provide lower latency and utilization. • • Configured and monitored through an optional AXI4-Lite Management Data interface or using status and configuration vectors Supports 10GBASE-SR, -LR and -ER optical links in Zynq-7000, UltraScale™, Virtex-7, and Kintex-7 devices (LAN mode only) Supports 10GBASE-KR backplane linksincluding Auto-Negotiation (AN), Training and Forward Error Correction (FEC) Supports Deficit Idle Count • • • Comprehensive statistics gathering • • • Custom Preamble mode • Supports 802.3 and 802.1Qbb flow control Supports VLAN and jumbo frames Independent TX and RX Maximum Transmission Unit (MTU) frame length Supports high accuracy IEEE Standard 1588-2008 1-step and 2-step timestamping on a 10GBASE-R network interface • 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 4 Product Specification Send Feedback
Chapter 1 Overview The 10G Ethernet subsystem provides 10 Gb/s Ethernet MAC, Physical Coding Sublayer (PCS) and Physical Medium Attachment (PMA) transmit and receive functionality over an AXI4-Stream interface. The subsystem is designed to interface with a 10GBASE-R Physical-Side Interface (PHY) or a 10GBASE-KR backplane and is designed to the IEEE Standard 802.3-2012, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (IEEE Std 802.3) [Ref 1]. The 10GBASE-KR subsystem is distinguished from the 10GBASE-R subsystem by the addition of a Link Training block as well as optional Auto-Negotiation (AN) and Forward Error Correction (FEC) features, to support a 10 Gb/s data stream across a backplane. The subsystem also provides an optional high accuracy timestamping capability compatible with IEEE Std 1588-2008 (also known as IEEE1588v2). This is available for the 10GBASE-R standard. Figure 1-1 shows the block diagram of the 10G Ethernet MAC subsystem. X-Ref Target - Figure 1-1 Optional AXI4-Lite Management Interface AXI4-Stream 10 Gigabit Ethernet MAC Internal XGMII 10 Gigabit Ethernet PCS/PMA (10GBASE-R or 10GBASE-KR) Serial Timer Sync (optional for 1588) Timer Sync (optional for 1588) System Timer X13598 Figure 1-1: 10G Ethernet MAC Block Diagram 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 5 Send Feedback
Chapter 1: Overview 10G Ethernet MAC X-Ref Target - Figure 1-2 Figure 1-2: 10G Ethernet MAC Block Diagram Figure 1-2 illustrates the 10G Ethernet MAC block diagram. The major functional blocks include the following: • • • • Transmit Engine which formats the frame and interframe gap Receive Engine which decodes frames and performs error checking on them Flow Control, either 802.3 legacy mode or 802.1Qbb priority flow control Reconciliation Sublayer which interfaces the MAC to the connected 10GBASE-R/10GBASE-KR core • Optional Management Block which provides an AXI4-Lite interface for configuration, access to internal statistical counters, and to the MDIO registers of the connected 10GBASE-R/10GBASE-KR core 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 6 Send Feedback
Chapter 1: Overview 10GBASE-R For Zynq®-7000, UltraScale™, Virtex®-7, and Kintex®-7 devices, all of the PCS and management blocks illustrated are implemented in logic, except for part of the Gearbox and SERDES. Figure 1-3 shows the architecture. X-Ref Target - Figure 1-3 Elastic Buffer 64b66b Decode 10- Gigabit Ethernet MAC PCS 64b66b Encode XGMII (SDR) Fabric Test Pattern Check Test Pattern Generate MDIO GT Descramble Block Sync rxn,p BER Mon SERDES Scramble Phase FIFO Gearbox txn,p Control + Status PCS/PMA Registers X12649 Figure 1-3: 10GBASE-R Block Diagram The major functional blocks include the following: • • • Transmit path, including scrambler, 64b/66b encoder and Gearbox Receive path, including block synchronization, descrambler, decoder and BER (Bit Error Rate) monitor Elastic buffer in the receive datapath. The elastic buffer is 32 words deep (1 word = 64bits data + 8 control). If the buffer empties, local fault codes are inserted instead of data. This allows you to collect up to 64 clock correction (CC) sequences before the buffer overflows (and words are dropped). The buffer normally fills up to one half and then deletes CC sequences when over half full, and inserts CC sequences when under one half full. So from a half-full state, you can (conservatively) accept an extra 360 KB of data (that is, receiving at +200 ppm) without dropping any. From a half-full state you can cope with another 360 KB of data without inserting local faults (for –200 ppm). Test pattern generation and checking Serial interface to optics • • • Management registers (PCS/PMA) with optional MDIO interface 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 7 Send Feedback
Chapter 1: Overview 10GBASE-KR Figure 1-4 illustrates a block diagram of the 10GBASE-KR implementation. The major functional blocks include the following: • • • Transmit path, including scrambler, 64b/66b encoder, FEC, AN and Training Receive path, including block synchronization, descrambler, decoder and BER (Bit Error Rate) monitor, FEC, AN and Training Elastic buffer in the receive datapath. The elastic buffer is 32 words deep (1 word = 64bits data + 8 control). If the buffer empties, local fault codes are inserted instead of data. This allows you to collect up to 64 clock correction (CC) sequences before the buffer overflows (and words are dropped). The buffer normally fills up to one half and then deletes CC sequences when over half full, and inserts CC sequences when under one half full. So from a half-full state, you can (conservatively) accept an extra 360 KB of data (that is, receiving at +200 ppm) without dropping any. From a half-full state you can cope with another 360 KB of data without inserting local faults (for –200 ppm). Test pattern generation and checking Serial interface to backplane connector • • • Management registers (PCS/PMA) with optional MDIO interface X-Ref Target - Figure 1-4 10-Gigabit Ethernet MAC Elastic Buffer Fabric GT PCS FEC AN TRAIN SERDES rxn,p txn,p XGMII (SDR) MDIO Control + Status PCS/PMA Registers Figure 1-4: BASE-KR Block Diagram Feature Summary The subsystem performs the Link function of the Ethernet standard. The subsystem supports both 802.3 and, optionally, 802.1Qbb (priority-based) flow control in both 10Gb Ethernet v3.1 PG157 October 4, 2017 www.xilinx.com 8 Send Feedback
分享到:
收藏