logo资料库

Advanced Optimization-by-Nature-inspired-Algorithms.pdf

第1页 / 共159页
第2页 / 共159页
第3页 / 共159页
第4页 / 共159页
第5页 / 共159页
第6页 / 共159页
第7页 / 共159页
第8页 / 共159页
资料共159页,剩余部分请下载后查看
Preface
Contents
Figures
Tables
Introduction
Introduction
Optimization: Core Principles and Technical Terms
Brief History of CI-Based Optimization Algorithms
Classi fi cation of CI-Based Optimization Algorithms
No Free Lunch Theorem: The Reason Behind New Algorithms
Conclusion
References
Cat Swarm Optimization (CSO)
Introduction
Natural Process of the Cat Swarm Optimization Algorithm
Seeking Mode (Resting)
Tracing Mode (Movement)
Termination Criteria
Performance of the CSO Algorithm
Pseudo Code of the CSO Algorithm
Conclusion
References
League Championship (LCA)
Introduction
Review of LCA and Its Terminology
League Championship Algorithm
Generating League Schedule
Determining the Winner or Loser
Setting Up a New Team Formation
Pseudo Code of LCA
Conclusions
References
Anarchic Society Optimization (ASO)
Introduction
Formulation
Algorithm Procedure
Movement Policy Based on Current Positions
Movement Policy Based on Positions of Other Members
Movement Policy Based on Previous Positions
Combination of Movement Policies
Pseudo Code of the ASO
Conclusion
References
Cuckoo Optimization (COA)
Introduction
Cuckoo Life Style
Details of COA
Cuckoos’ Initial Residence Locations
Cuckoos’ Egg Laying Approach
Cuckoos Immigration
Demising Cuckoos Laid in Inappropriate Positions
Pseudo Code for COA
Capabilities of COA
Conclusion
References
Teaching-Learning-based Optimization (TLBO)
Introduction
Mapping a Classroom into the Teaching-Learning-Based Optimization Algorithm
Teacher Phase
Learner Phase
Pseudo Code of the TLBO Algorithm
Conclusion
References
Flower Pollination (FPA)
Introduction
Flower Pollination Process
Flower Pollination Algorithm
User-De fi ned Parameters of the FPA
Pseudo Code of FPA
Conclusion
References
Krill Herd (KHA)
Introduction
Krill Swarms’ Herding Pattern
Motion Induced by the Krill Herd
Foraging Motion
Physical Diffusion
Motion Process of the KHA
Pseudo Code of KHA
Conclusion
References
Grey Wolf Optimization (GWO)
Introduction
Natural Process of the GWO Algorithm
Mathematical Model of the GWO Algorithm
Social Hierarchy
Encircling the Prey
Attacking the Prey
Searching for the Prey (Exploration)
Optimization Process in GWO Algorithm
Pseudocode of GWO
Conclusions
References
Shark Smell Optimization (SSO)
Introduction
Underlying Idea of SSO
Formulation of the SSO Algorithm
Initialization of SSO: Finding Initial Odor Particles
Shark Movement Toward the Prey
Pseudo-Code of SSO
Conclusion
References
Ant Lion Optimizer (ALO)
Introduction
Mapping Antlions Hunting Mechanism into the ALO
Initialization of Positions of Ants and Antlions and Evaluation of Their Fitness Functions
Digging Trap
Sliding Ants Toward Antlion
Entrapping Ants Inside Pits
Random Walk of Ants
Elitism
Catching Prey and Reconstruct the Trap
Termination Criteria
User-De fi ned Parameters of the ALO Algorithm
Pseudo-Code of the ALO Algorithm
Conclusion
References
Gradient Evolution (GE)
Introduction
Underlying Idea of the GE Algorithm
Gradient
Gradient-Based Algorithm
Mathematical Formulation of the GE Algorithm
Solution Representation and Algorithm Initialization
Vector Updating
Vector Jumping
Vector Refreshing
Pseudo-Code of GE
Conclusion
References
Moth-Flame Optimization (MFO)
Introduction
Mapping the Navigation Method of Moths into Moth-Flame Optimization
Creating the Initial Population of Moths
Updating the Moths’ Positions
Updating the Number of Flames
Termination Criteria
Performance of the MFO
Pseudocode of the MFO
Conclusion
References
Crow Search (CSA)
Introduction
Crow Flock’s Food Gathering Imitation
CSA Implementation for Optimization
Pseudo Code of the CSA
Conclusion
References
Dragonfly (DA)
Introduction
Dragonflies’ Swarming Patterns
Optimization Procedure of the DA
Pseudo-Code of the DA
Conclusion
References
Omid Bozorg-Haddad Editor Advanced Optimization by Nature-inspired Algorithms 123
Editor Omid Bozorg-Haddad Department of Irrigation & Reclamation Engineering College of Agriculture & Natural Resources, University of Tehran Karaj Iran ISSN 1860-949X Studies in Computational Intelligence ISBN 978-981-10-5220-0 DOI 10.1007/978-981-10-5221-7 ISSN 1860-9503 (electronic) ISBN 978-981-10-5221-7 (eBook) Library of Congress Control Number: 2017943829 © Springer Nature Singapore Pte Ltd. 2018 This Springer imprint is published by Springer Nature The registered company is Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore
Preface From the early 1990s, the introduction of the term “Computational Intelligence” (CI) highlighted the potential applicability of this field. One of the preliminary applications of the field was in the realm of optimization. Undoubtedly, the tasks of design and operation of systems can be approached systematically by the application of optimization. And while in most real-life problems, including engineering problems, application of the classical optimization techniques were limited due to the complex nature of the decision space and numerous variables, and the CI-based optimization techniques, which imitated the nature as a source of inspiration, have proven quite useful. Consequently, during the last passing decades, a considerable number of novel nature-based optimization algorithms have been proposed in the literature. While most of these algorithms hold considerable promise, a majority of them are still in their infancy. For such algorithms to bloom and reach their full potential, they should be implemented in numerous optimization problems, so that not only their most suitable sets of optimization problems are recognized, but also adaptive strategies need to be introduced to make them more suitable for wider sets of optimization problems. For that, this book specifically aimed to introduce some of these potential nature-based algorithms that could be useful for multidisciplinary students including those in aeronautic engineering, mechanical engineering, indus- trial engineering, electrical and electronic engineering, chemical engineering, civil engineering, computer science, applied mathematics, physics, economy, biology, and social science, and particularly those pursuing postgraduate studies in advanced subjects. Chapter 1 of the book is a review of the basic principles of optimization and nature-based optimization algorithms. Chapters 2–15 are respectively dedicated to Cat Swarm Optimization (CSO), League Championship Algorithm (LCA), Anarchies Society Optimization (ASO), Cuckoo Optimization Algorithm (COA), Teacher-Learning-Based Optimization (TLBO), Flower Pollination Algorithm (FPA), Krill Herd Algorithm (KHA), Grey Wolf Optimization (GWO), Shark Smell Optimization (SSO), Ant Lion Optimization (ALO), Gradient Evolution (GE), Moth-Flame Optimization (MFO), Crow Search Algorithm (CSA), and Dragonfly Algorithm (DA). The order of the chapters corresponds to the order of chronological appearance of these algorithms, from earlier algorithms to newly introduced ones. Each chapter describes a specific algorithm and starts with a brief literature review of its development and subsequent modification since the time of inception. This is followed by the presentation of the basic concept on which the algorithm is based and the steps of the algorithm. Each chapter closes with a pseudocode of the algorithm. Karaj, Iran Omid Bozorg-Haddad
Contents 1 2 3 4 5 6 7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu Cat Swarm Optimization (CSO) Algorithm. . . . . . . . . . . . . . . . . . . . Mahdi Bahrami, Omid Bozorg-Haddad and Xuefeng Chu League Championship Algorithm (LCA). . . . . . . . . . . . . . . . . . . . . . Hossein Rezaei, Omid Bozorg-Haddad and Xuefeng Chu Anarchic Society Optimization (ASO) Algorithm . . . . . . . . . . . . . . . Atiyeh Bozorgi, Omid Bozorg-Haddad and Xuefeng Chu Cuckoo Optimization Algorithm (COA) . . . . . . . . . . . . . . . . . . . . . . Saba Jafari, Omid Bozorg-Haddad and Xuefeng Chu Teaching-Learning-Based Optimization (TLBO) Algorithm . . . . . . Parisa Sarzaeim, Omid Bozorg-Haddad and Xuefeng Chu Flower Pollination Algorithm (FPA) . . . . . . . . . . . . . . . . . . . . . . . . . Marzie Azad, Omid Bozorg-Haddad and Xuefeng Chu 8 Krill Herd Algorithm (KHA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu 9 Grey Wolf Optimization (GWO) Algorithm . . . . . . . . . . . . . . . . . . . Hossein Rezaei, Omid Bozorg-Haddad and Xuefeng Chu 10 Shark Smell Optimization (SSO) Algorithm . . . . . . . . . . . . . . . . . . . Sahar Mohammad-Azari, Omid Bozorg-Haddad and Xuefeng Chu 1 9 19 31 39 51 59 69 81 93 11 Ant Lion Optimizer (ALO) Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 105 Melika Mani, Omid Bozorg-Haddad and Xuefeng Chu 12 Gradient Evolution (GE) Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 117 Mehri Abdi-Dehkordi, Omid Bozorg-Haddad and Xuefeng Chu 13 Moth-Flame Optimization (MFO) Algorithm . . . . . . . . . . . . . . . . . . 131 Mahdi Bahrami, Omid Bozorg-Haddad and Xuefeng Chu 14 Crow Search Algorithm (CSA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu 15 Dragonfly Algorithm (DA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Babak Zolghadr-Asli, Omid Bozorg-Haddad and Xuefeng Chu
Figures Fig. 2.1 Fig. 3.1 Fig. 3.2 Fig. 3.3 Fig. 4.1 Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 6.1 Fig. 7.1 Fig. 8.1 Fig. 8.2 Fig. 9.1 Fig. 9.2 Fig. 9.3 Fig. 9.4 Fig. 9.5 Fig. 10.1 Fig. 10.2 Fig. 10.3 Fig. 11.1 Fig. 11.2 Fig. 11.3 Fig. 12.1 Fig. 12.2 13 23 24 26 33 43 45 46 54 64 Flowchart of the CSO algorithm . . . . . . . . . . . . . . . . . . . . . . . . Flowchart of the basic LCA . . . . . . . . . . . . . . . . . . . . . . . . . . . A simple example of league championship scheduling . . . . . . . Procedure of the artificial match analysis in LCA . . . . . . . . . . . Flowchart of the ASO algorithm . . . . . . . . . . . . . . . . . . . . . . . . Flowchart of the COA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random egg laying in ELR (the black circle is the cuckoo’s initial habitat with three eggs; and the white circles are the eggs at new positions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Immigration of a sample cuckoo to the target habitat . . . . . . . . Flowchart of the TLBO algorithm . . . . . . . . . . . . . . . . . . . . . . . Flowchart of the FPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematic representation of the sensing ambit around a krill individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified flowchart of the KHA. . . . . . . . . . . . . . . . . . . . . . . . Social hierarchy of grey wolves. . . . . . . . . . . . . . . . . . . . . . . . . Attacking toward prey versus searching for prey . . . . . . . . . . . . Updating of positions in the GWO algorithm . . . . . . . . . . . . . . Attacking toward prey and searching for prey . . . . . . . . . . . . . . Flowchart of the GWO algorithm . . . . . . . . . . . . . . . . . . . . . . . Schematic of shark’s movement toward the source of the smell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Rotational movement of a shark . . . . . . . . . . . . . . . . . . . . . . . . 99 Flowchart of the SSO algorithm . . . . . . . . . . . . . . . . . . . . . . . . 100 Antlion hunting behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Flowchart of the ALO algorithm (It = iteration counter; and IT = number of iterations). . . . . . . . . . . . . . . . . . . . . . . . . . 108 Three random walk curves in one dimension started at zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Gradient determination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Search direction for the original gradient-based method . . . . . . 122 73 77 82 85 86 86 89
Fig. 12.3 Fig. 12.4 Search direction for the GE algorithm . . . . . . . . . . . . . . . . . . . . 123 Gradient approximation method modified from individual-based search to population-based search: a individual-based, b population-based . . . . . . . . . . . . . . . . . . . 123 Vector jumping operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Fig. 12.5 Fig. 12.6 Flowchart of the GE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 127 Fig. 13.1 Moth’s spiral flying path around a light source . . . . . . . . . . . . . 134 Flowchart of the MFO algorithm . . . . . . . . . . . . . . . . . . . . . . . . 135 Fig. 13.2 Fig. 14.1 Flowchart of the standard CSA . . . . . . . . . . . . . . . . . . . . . . . . . 147 Primitive corrective patterns of dragonfly individuals Fig. 15.1 in a swarm: a Separation; b Alignment; c Cohesion; d Food Attraction; and e Predator distraction . . . . . . . . . . . . . . 153 Flowchart of the DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Fig. 15.2
Tables Table 2.1 Characteristics of the CSO algorithm. . . . . . . . . . . . . . . . . . . . . Table 3.1 Characteristics of the LCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3.2 Hypothetical SWOT analysis derived from the artificial 12 21 match analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 4.1 Characteristics of the ASO algorithm. . . . . . . . . . . . . . . . . . . . . 34 Table 5.1 Characteristics of the COA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 6.1 Characteristics of the TLBO algorithm . . . . . . . . . . . . . . . . . . . 55 Table 7.1 Characteristics of the FPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Table 8.1 The characteristics of the KHA . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 9.1 Characteristics of the GWO algorithm . . . . . . . . . . . . . . . . . . . . 87 Table 10.1 Characteristics of the SSO algorithm . . . . . . . . . . . . . . . . . . . . . 101 Table 11.1 Characteristics of the ALO algorithm . . . . . . . . . . . . . . . . . . . . 108 Table 12.1 Characteristics of the GE algorithm . . . . . . . . . . . . . . . . . . . . . . 128 Table 13.1 Characteristics of the MFO algorithm . . . . . . . . . . . . . . . . . . . . 135 Table 14.1 Characteristics of the CSA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 15.1 Characteristics of the DA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Chapter 1 Introduction Babak Zolghadr-Asli , Omid Bozorg-Haddad and Xuefeng Chu Abstract In this chapter, some general knowledge relative to the realm of nature-inspired optimization algorithms (NIOA) is introduced. The desirable merits of these intelligent algorithms and their initial successes in many fields have inspired researchers to continuously develop such revolutionary algorithms and implement them to solve various real-world problems. Such a truly interdisciplinary environment of the research and development provides rewarding opportunities for scientific breakthrough and technology innovation. After a brief introduction to computational intelligence and its application in optimization problems, the history of the NIOA was reviewed. The relevant algorithms were then categorized in different manners. Finally, one the most groundbreaking theorems regarding the nature-inspired optimization techniques was briefly discussed. 1.1 Introduction Artificial intelligence (AI) refers to any sort of intelligence that is exhibited by machines. The term of computational intelligence (CI), a branch of AI, was coined by Bezdek in the early 1990s (Bezdek 1992), which inspired the development of a B. Zolghadr-Asli  O. Bozorg-Haddad (&) Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, 3158777871 Karaj, Iran e-mail: obhaddad@ut.ac.ir B. Zolghadr-Asli e-mail: zolghadrbabak@ut.ac.ir X. Chu Department of Civil and Environmental Engineering, North Dakota State University, Dept 2470, Fargo, ND 58108-6050, USA e-mail: xuefeng.chu@ndsu.edu
分享到:
收藏