logo资料库

二叉树先序、中序、后序三种遍历的非递归算法.doc

第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
资料共3页,全文预览结束
1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌 while 实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s;
StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历 }//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t) { SqStack s; stacknode x; StackInit(s); p=t;
do { while (p!=null) //遍历左子树 { x.ptr = p; x.tag = L; //标记为左子树 push(s,x); p=p->lchild; } while (!StackEmpty(s) && s.Elem[s.top].tag==R) { x = pop(s); p = x.ptr; visite(p->data); //tag 为 R,表示右子树访问完毕,故访问根结点 } if (!StackEmpty(s)) { s.Elem[s.top].tag =R; //遍历右子树 p=s.Elem[s.top].ptr->rchild; } }while (!StackEmpty(s)); }//PostOrderUnrec
分享到:
收藏