logo资料库

Numerical Optimization (Second Edition).pdf

第1页 / 共686页
第2页 / 共686页
第3页 / 共686页
第4页 / 共686页
第5页 / 共686页
第6页 / 共686页
第7页 / 共686页
第8页 / 共686页
资料共686页,剩余部分请下载后查看
This is page i Printer: Opaque this Springer Series in Operations Research and Financial Engineering Editors: Thomas V. Mikosch Sidney I. Resnick Stephen M. Robinson
This is pag Printer: O Springer Series in Operation Research and Financial Engineering Altiok: Performance Analysis of Manufacturing Systems Birge and Louveaux: Introduction to Stochastic Programming Bonnans and Shapiro: Perturbation Analysis of Optimization Problems Bramel, Chen, and Simchi-Levi: The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management (second edition) Dantzig and Thapa: Linear Programming 1: Introduction Dantzig and Thapa: Linear Programming 2: Theory and Extensions Drezner (Editor): Facility Location: A Survey of Applications and Methods Facchinei and Pang: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I Facchinei and Pang: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume II Fishman: Discrete-Event Simulation: Modeling, Programming, and Analysis Fishman: Monte Carlo: Concepts, Algorithms, and Applications Haas: Stochastic Petri Nets: Modeling, Stability, Simulation Klamroth: Single-Facility Location Problems with Barriers Muckstadt: Analysis and Algorithms for Service Parts Supply Chains Nocedal and Wright: Numerical Optimization Olson: Decision Aids for Selection Problems Pinedo: Planning and Scheduling in Manufacturing and Services Pochet and Wolsey: Production Planning by Mixed Integer Programming Whitt: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues Yao (Editor): Stochastic Modeling and Analysis of Manufacturing Systems Yao and Zheng: Dynamic Control of Quality in Production-Inventory Systems: Coordination and Optimization Yeung and Petrosyan: Cooperative Stochastic Differential Games
This is page iii Printer: Opaque this Jorge Nocedal Stephen J. Wright Numerical Optimization Second Edition
This is pag Printer: O Stephen J. Wright Computer Sciences Department University of Wisconsin 1210 West Dayton Street Madison, WI 53706–1613 USA swright@cs.wisc.edu Stephen M. Robinson Department of Industrial and Systems Engineering University of Wisconsin 1513 University Avenue Madison, WI 53706–1539 USA smrobins@facstaff.wise.edu Jorge Nocedal EECS Department Northwestern University Evanston, IL 60208-3118 USA nocedal@eecs.northwestern.edu Series Editors: Thomas V. Mikosch University of Copenhagen Laboratory of Actuarial Mathematics DK-1017 Copenhagen Denmark mikosch@act.ku.dk Sidney I. Resnick Cornell University School of Operations Research and Industrial Engineering Ithaca, NY 14853 USA sirl@cornell.edu Mathematics Subject Classification (2000): 90B30, 90C11, 90-01, 90-02 Library of Congress Control Number: 2006923897 ISBN-10: 0-387-30303-0 ISBN-13: 978-0387-30303-1 Printed on acid-free paper. C 2006 Springer Science+Business Media, LLC. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (TB/HAM) 9 8 7 6 5 4 3 2 1 springer.com
This is page v Printer: Opaque this To Sue, Isabel and Martin and To Mum and Dad
Contents Preface Preface to the Second Edition 1 Introduction . . . . . . . . . . . . . . Mathematical Formulation . . . Example: A Transportation Problem . . Continuous versus Discrete Optimization . . Constrained and Unconstrained Optimization . . Global and Local Optimization . . . Stochastic and Deterministic Optimization . . . Convexity . Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Fundamentals of Unconstrained Optimization . 2.1 What Is a Solution? . . . . . . . . . . . . . . . . . . . . . . . . . . . This is page vii Printer: Opaque this xvii xxi 1 2 4 5 6 6 7 7 8 9 10 12
viii C O N T E N T S . . . . . . . . . . . . . . . . . . . . . . . . . Recognizing a Local Minimum . . . Nonsmooth Problems . . . Overview of Algorithms . . Two Strategies: Line Search and Trust Region . . Search Directions for Line Search Methods . . . Models for Trust-Region Methods . Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 3.3 3 Line Search Methods . . . . Step Length . . . . . The Wolfe Conditions . . . . The Goldstein Conditions . . . . Sufficient Decrease and Backtracking . . . Convergence of Line Search Methods . . . Rate of Convergence . . . . Convergence Rate of Steepest Descent . . . . Newton’s Method . . . Quasi-Newton Methods . . . . Newton’s Method with Hessian Modification . . . Eigenvalue Modification . . . Adding a Multiple of the Identity . . . Modified Cholesky Factorization . . . Modified Symmetric Indefinite Factorization . . . Step-Length Selection Algorithms . . . Interpolation . . . Initial Step Length . . . . A Line Search Algorithm for the Wolfe Conditions . . . Notes and References Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Trust-Region Methods . . . . . . . . . . . . . Outline of the Trust-Region Approach . . Algorithms Based on the Cauchy Point . . . . . The Cauchy Point . . . . . Improving on the Cauchy Point . The Dogleg Method . . . . . . Two-Dimensional Subspace Minimization . . Global Convergence . . . Reduction Obtained by the Cauchy Point . . Convergence to Stationary Points . . . . . Iterative Solution of the Subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 4.2 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 17 18 19 20 25 26 27 30 31 33 36 37 37 41 42 44 46 48 49 51 52 54 56 57 59 60 62 63 66 68 71 71 73 73 76 77 77 79 83
分享到:
收藏