logo资料库

optistruct 官方学习手册.pdf

第1页 / 共271页
第2页 / 共271页
第3页 / 共271页
第4页 / 共271页
第5页 / 共271页
第6页 / 共271页
第7页 / 共271页
第8页 / 共271页
资料共271页,剩余部分请下载后查看
00a_COVER_OS
00b_CONTACTS_11
00c_PROGRAM_v12_20121218
01_CH1_INTRODUCTION_v12_20121218
02_CH2_THEORETICAL_BACKGROUND_v12_20121218
03_CH3_OPTIMIZATION_INTERFACE_AND_SETUP_v12_20121218
04_CH4_CONCEPT_DESIGN_v12_20121218
05_CH5_FINE_TUNING_DESIGN_v12_20121218
06_APPENDIX_A_COMPOSITE_PLATE_v12_20121218
02-contacts_12.pdf
Altair Engineering Contact Information
02-contacts_12.pdf
Altair Engineering Contact Information
www.altairhyperworks.com | HyperWorks is a division of
Altair Engineering Contact Information Web site www.altairhyperworks.com FTP site Location Australia Brazil China France Address: Login: Password: ftp.altair.com or ftp2.altair.com or http://ftp.altair.com/ftp ftp Telephone 61.3.9016.9042 55.11.3884.0414 86.21.6117.1666 33.1.4133.0992 e-mail anzsupport@altair.com br_support@altair.com support@altair.com.cn francesupport@altair.com Germany 49.7031.6208.22 hwsupport@altair.de 91.80. 6629.4500 1.800.425.0234 (toll free) support@india.altair.com support@altairengineering.it support@altairjp.co.jp support@altair.co.kr anzsupport@altair.com hwsupport@altair.com India Italy Japan Korea 39.800.905.595 81.3.5396.2881 82.31.716.4321 New Zealand 64.9.413.7981 North America 248.614.2425 Scandinavia 46.46.286.2052 support@altair.se United Kingdom 01926.468.600 support@uk.altair.com The following countries have distributors for Altair Engineering: Asia Pacific: Indonesia, Malaysia, Singapore, Taiwan, Thailand Europe: Czech Republic, Hungary, Poland, Romania, Spain, Turkey. Copyright© Altair Engineering Inc. All Rights Reserved for: HyperMesh® 1990-2013; HyperCrash® 2001-2013; OptiStruct® 1996-2013; RADIOSS®1986-2013; HyperView®1999-2013; HyperView Player® 2001-2013; HyperStudy® 1999-2013; HyperGraph®1995-2013; MotionView® 1993-2013; MotionSolve® 2002- 2013; HyperForm® 1998-2013; HyperXtrude® 1999-2013; Process Manager™ 2003-2013; Templex™ 1990-2013; MediaView™ 1999-2013; BatchMesher™ 2003-2013; TextView™ 1996-2013; HyperMath® 2007-2013; ScriptView™ 2007-2013; Manufacturing Solutions™ 2005-2013; HyperWeld® 2009-2013; HyperMold® 2009-2013; solidThinking® 1993-2013; solidThinking Inspire™ 2009-2013; solidThinking Evolve™ 1993-2013; Durability Director™ 2009-2013; Suspension Director™ 2009-2013; AcuSolve® 1997-2013; and AcuConsole® 2006-2013. In addition to HyperWorks® trademarks noted above, GridWorks™, PBS GridWorks®, PBS Professional®, PBS™, PBS Works™ and Portable Batch System® are trademarks of ALTAIR ENGINEERING INC. All are protected under U.S. and international laws and treaties. Copyright© 1994-2013. Additionally, the Altair software is protected under patent #6,859,792 and other patents pending. All other marks are the property of their respective owners. ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclosure outside of ALTAIR and its licensed clients. Information contained in HyperWorks® shall not be decompiled, disassembled, or “unlocked”, reverse translated, reverse engineered, or publicly displayed or publicly performed in any manner. Usage of the software is only as explicitly permitted in the end user software license agreement. Copyright notice does not imply publication.
Table of Contents OptiStruct Optimization Analysis, Concept and Optimization Table of Contents .................................................................................................................... 1 Chapter 1: Introduction ............................................................................................ 7 1 – HyperWorks Overview ............................................................................................... 7 1.1 – HyperWorks Tool Descriptions ............................................................................... 8 1.2 – OptiStruct Integration with HyperWorks ................................................................ 10 2 – OptiStruct Overview ................................................................................................ 11 2.1 – Finite Element Analysis ........................................................................................ 11 2.2 – Multi-body Dynamic Analysis ................................................................................ 12 2.3 – Structural Design and Optimization ...................................................................... 12 2.4 – Case Studies ........................................................................................................ 15 2.4.1 – Lightweight SUV Frame Development ............................................................... 15 2.4.2 – Optimization Process of a Torsion Link .............................................................. 16 Chapter 2: Theoretical Background ...................................................................... 17 1 – Optimization ............................................................................................................ 17 1.1 – Design Variable .................................................................................................... 17 1.2 – Response ............................................................................................................. 19 1.2.1 – Subcase Independent Response ....................................................................... 19 1.3 – Objective Function ................................................................................................ 25 1.4 – Constraint Functions............................................................................................. 25 2 – Gradient-based Optimization ................................................................................... 29 2.1 – Gradient Method ................................................................................................... 30 2.2 – Sensitivity Analysis ............................................................................................... 31 2.3 – Move Limit Adjustments ....................................................................................... 35 3 Proprietary Information of Altair Engineering, Inc. HyperWorks 12.0
2.4 – Constraint Screening ............................................................................................ 35 2.4.1 – Regions and Their Purpose ............................................................................... 37 2.5 – Discrete Design Variables .................................................................................... 38 Exercise 2.1: Getting Started using Inspire .................................................................... 39 Exercise 2.2: Topology Optimization Using Multiple Load Cases in Inspire ................... 55 Chapter 3: HyperMesh Optimization Interface ..................................................... 97 1 – Model Definition Structure ....................................................................................... 97 1.1 – Input/Output Section ............................................................................................. 98 1.2 – Subcase Information Section .............................................................................. 101 1.3 – Bulk Data Section ............................................................................................... 101 2 – Optimization Setup ................................................................................................ 102 2.1 – Optimization GUI ................................................................................................ 102 2.2 – Design Variable [ DTPL] ..................................................................................... 103 2.3 – Responses [DRESP1] ........................................................................................ 104 2.4 – Dconstraints [DCONSTR] ................................................................................... 105 2.5 – Obj. reference [DOBJREF] ................................................................................. 106 2.6 – Objective [DESOBJ] ........................................................................................... 107 2.7 – Table entries [DTABLE] ...................................................................................... 108 2.8 – Dequations [DEQATN] ....................................................................................... 109 2.9 – Discrete DVs [DDVAL] ........................................................................................ 110 2.10 – Opti. control [DOPTPRM] ................................................................................. 111 2.11 – Constr. Screen [DSCREEN] ............................................................................. 112 3 – How to Setup an Optimization in HyperMesh ........................................................ 113 Chapter 4: Concept Design ................................................................................. 119 1 – Topology Optimization .......................................................................................... 119 1.1 – Homogenization method ..................................................................................... 120 1.2 – Density method .................................................................................................. 120 HyperWorks 12.0 Proprietary Information of Altair Engineering, Inc. 4
Exercise 4.1 – Topology Optimization of a Hook with Stress Constraints .................... 121 Exercise 4.2 – Topology Optimization of a Control Arm ............................................... 129 Exercise 4.3: Pattern Repetition using Topology Optimization ..................................... 135 2 – Topography Optimization ...................................................................................... 141 2.1 – Design Variables for Topography Optimization ................................................... 141 2.1.1 – Variable Generation ......................................................................................... 142 2.1.2 – Multiple Topography Design Regions .............................................................. 143 Exercise 4.4 – Topography Optimization of an L-Bracket Including Autobead Reinterpretation ........................................................................................................... 147 3 – Free-size Optimization........................................................................................... 155 Exercise 4.5 – Free-size optimization of Finite Plate with hole .................................... 161 4 – Design Interpretation - OSSmooth ......................................................................... 169 4.1 – OSSmooth Input Data ........................................................................................ 171 4.2 – Running OSSmooth ........................................................................................... 173 4.3 – Interpretation of Topography Optimization Results ............................................. 174 4.4 – Shape Optimization Results, Surface Reduction and Surface Smoothing ........... 175 Exercise 4.6 – OSSmooth surfaces from a topology optimization ................................ 177 Chapter 5: Fine-Tuning ........................................................................................ 181 1 – Size Optimization .................................................................................................. 181 1.1 – Design Variables for Size Optimization ............................................................... 182 Exercise 5.1 – Size Optimization of a Rail Joint ........................................................... 183 Exercise 5.2 – Discrete Size Optimization of a Welded Bracket .................................. 191 2 – Shape Optimization ............................................................................................... 199 2.1 – Design Variables for Shape Optimization ........................................................... 200 2.2 – HyperMorph ....................................................................................................... 201 2.2.1 – The Three Basic Approaches to Morphing ....................................................... 201 Exercise 5.3 – Cantilever L-beam Shape Optimization ................................................ 203 Exercise 5.4 – Shape Optimization of a Rail Joint ....................................................... 229 5 Proprietary Information of Altair Engineering, Inc. HyperWorks 12.0
3 – Free-shape Optimization ....................................................................................... 229 3.1 – Defining Free-shape Design Regions ................................................................. 229 3.2 – Free-shape Parameters ...................................................................................... 231 3.2.1 – Direction type .................................................................................................. 231 3.2.2 – Move factor ..................................................................................................... 232 3.2.3 – Number of layers for mesh smoothing ............................................................. 232 3.2.4 – Maximum shrinkage and growth ...................................................................... 233 3.2.5 – Constraints on Grids in the Design Region ...................................................... 234 Exercise 5.5 – Free-shape Optimization of a Compressor Bracket .............................. 237 Exercise 5.6 - Shape Optimization of a 3-D Bracket using the Free-shape Method .... 245 Appendix A ........................................................................................................... 255 HyperWorks 12.0 Proprietary Information of Altair Engineering, Inc. 6
Chapter 1: Introduction Chapter 1 Introduction 1- HyperWorks Overview HyperWorks®, A Platform for Innovation™, is an enterprise simulation solution for rapid design exploration and decision-making. As one of the most comprehensive CAE solutions in the industry, HyperWorks provides a tightly integrated suite of best-in-class tools for: o Modeling o Analysis o Optimization o Visualization o Reporting o Performance data management. Based on a revolutionary “pay-for-use” token-based business model, HyperWorks delivers increased value and flexibility over other software licensing models. Below we list the applications that are part of HyperWorks, for extra information about them go to www.altairhyperworks.com web page or go to HyperWorks online documentation. HyperWorks 12.0 Proprietary Information of Altair Engineering, Inc. OptiStruct Optimization 7
Chapter 1: Introduction 1.1 – HyperWorks Tool Descriptions Finite Element Meshing and Modeling HyperMesh HyperCrash BatchMesher Multi-body Dynamics Modeling MotionView Solvers RADIOSS MotionSolve OptiStruct Post-processing and Data Analysis HyperView HyperGraph HyperGraph 3D HyperView Player Study and Optimization HyperStudy Data Management and Process Automation Altair Data Manager Process Manager Assembler Universal finite element pre- and post-processor Finite element pre-processor for automotive crash and safety analysis Geometry cleanup and auto-meshing in batch mode for given CAD files Multi-body dynamics pre- and post-processor Finite element solver for linear and non-linear problems Multi-body dynamics solver Design and optimization software using finite elements and multi-body dynamics High performance finite element and mechanical system post-processor, engineering plotter, and data analysis tool Engineering plotter and data analysis tool Engineering 3-D plotter and data analysis tool Viewer for visualizing 3-D CAE results via the Internet or desktop Integrated optimization, DOE, and robustness engine A solution that organizes, manages, and stores CAE and test data throughout the product design cycle Process automation tool for HyperWorks and third party software; Processes can be created with the help of Process Studio. A tool that enables CAE analysts to manage, organize, and control their CAE mesh data OptiStruct Optimization 8 Proprietary Information of Altair Engineering, Inc. HyperWorks 12.0
分享到:
收藏