logo资料库

RippleNet.pptx

第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
资料共24页,剩余部分请下载后查看
Authors:Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, WenjieLi, Xing Xie, Minyi Guo Venue : CIKM 2018 Presenter : JIARUI CHEN (201700301042)
Outline • Introduction • Motivation • Method • Dataset • Experiment • Conclusion 2
Introduction · Recommendation System · Information overload. · Brother of Search Engine. · Categories. 3
Introduction · Knowledge Graph · Heterogeneous network. · Node -> Entity,Edge -> Relation. · Example. 4
Introduction · Knowledge Graph based Recommendation · Heterogeneous network. · Node -> Entity,Edge -> Relation. · Example. 5
Introduction · Knowledge Graph based Recommendation · Heterogeneous network. · Node -> Entity,Edge -> Relation. Knowledge Graph Layer User Layer 6
Motivation · Existing Works · Embedding-based methods : · Use knowledge graph embedding to incorporates the learned entity embeddings into a recommendation framework. · These models more suitable for a graph tasks (e.g. link prediction) than recommendation. · Path-based methods : · Explore the various pattern of connections among items in KG to provide additional guidance for recommendations, e.g.through Meta-path. · Rely heavily on manually designed meta-paths,which is hard to optimize in practice. 7
Motivation · Key Idea : Preference propagation as ripples on the water · Combine above two categories together. · Use the items in the ripple sets as side information. · Example. 8
分享到:
收藏