ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
FOUNDING EDITOR G.-C. ROTA
Editorial Board
R. S. Doran, M. Ismail, T.-Y. Lam, E. Lutwak, R. Spigler
Volume 86
The Theory of Information and Coding
Second Edition
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:08:50 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
4 W. Miller, Jr. Symmetry and separation of variables
6 H. Minc Permanents
J. Aczel and J. Dhombres Functional equations containing several variables
J. R. Bastida Field extensions and Galois theory
J. R. Cannon The one-dimensional heat equation
11 W. B. Jones and W. J. Thron Continued fractions
12 N. F. G. Martin and J. W. England Mathematical theory of entropy
18 H. O. Fattorini The Cauchy problem
19 G. G. Lorentz, K. Jetter and S. D. Riemenschneider Birkhoff interpolation
21 W. T. Tutte Graph theory
22
23
25 A. Salomaa Computation and automata
26 N. White (ed.) Theory of matroids
27 N. H. Bingham, C. M. Goldie and J. L. Teugels Regular variation
28 P. P. Petrushev and V. A. Popov Rational approximation of real functions
29 N. White (ed.) Combinatorial geometrics
30 M. Pohst and H. Zassenhaus Algorithmic algebraic number theory
31
32 M. Kuczma, B. Chozewski and R. Ger Iterative functional equations
33 R. V. Ambartzumian Factorization calculus and geometric probability
34 G. Gripenberg, S.-O. Londen and O. Staffans Volterra integral and functional equations
35 G. Gasper and M. Rahman Basic hypergeometric series
36 E. Torgersen Comparison of statistical experiments
37 A. Neumaier Intervals methods for systems of equations
38 N. Korneichuk Exact constants in approximation theory
39 R. A. Brualdi and H. J. Ryser Combinatorial matrix theory
40 N. White (ed.) Matroid applications
41 S. Sakai Operator algebras in dynamical systems
42 W. Hodges Model theory
43 H. Stahl and V. Totik General orthogonal polynomials
44 R. Schneider Convex bodies
45 G. Da Prato and J. Zabczyk Stochastic equations in in®nite dimensions
46 A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler Oriented matroids
47 E. A. Edgar and L. Sucheston Stopping times and directed processes
48 C. Sims Computation with ®nitely presented groups
49 T. Palmer Banach algebras and the general theory of -algebras
Jan Krajicek Bounded arithmetic, propositional logic, and complex theory
50 F. Borceux Handbook of categorical algebra I
51 F. Borceux Handbook of categorical algebra II
52 F. Borceux Handbook of categorical algebra III
54 A. Katok and B. Hassleblatt Introduction to the modern theory of dynamical systems
55 V. N. Sachkov Combinatorial methods in discrete mathematics
56 V. N. Sachkov Probabilistic methods in discrete mathematics
57 P. M. Cohn Skew Fields
58 Richard J. Gardner Geometric tomography
59 George A. Baker, Jr. and Peter Graves-Morris Pade approximants
60
61 H. Gromer Geometric applications of Fourier series and spherical harmonics
62 H. O. Fattorini In®nite dimensional optimization and control theory
63 A. C. Thompson Minkowski geometry
64 R. B. Bapat and T. E. S. Raghavan Nonnegative matrices and applications
65 K. Engel Sperner theory
66 D. Cvetkovic, P. Rowlinson and S. Simic Eigenspaces of graphs
67 F. Bergeron, G. Labelle and P. Leroux Combinatorial species and tree-like structures
68 R. Goodman and N. Wallach Representations of the classical groups
69 T. Beth, D. Jungnickel and H. Lenz Design Theory volume I 2 ed.
70 A. Pietsch and J. Wenzel Orthonormal systems and Banach space geometry
71 George E. Andrews, Richard Askey and Ranjan Roy Special Functions
72 R. Ticciati Quantum ®eld theory for mathematicians
76 A. A. Ivanov Geometry of sporadic groups I
78 T. Beth, D. Jungnickel and H. Lenz Design Theory volume II 2 ed.
80 O. Stormark Lie's Structural Approach to PDE Systems
81 C. F. Dunkl and Y. Xu Orthogonal polynomials of several variables
82
83 C. Foias, R. Temam, O. Manley and R. Martins da Silva Rosa Navier±Stokes equations and turbulence
84 B. Polster and G. Steinke Geometries on Surfaces
85 D. Kaminski and R. B. Paris Asymptotics and Mellin±Barnes integrals
J. Mayberry The foundations of mathematics in the theory of sets
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:08:50 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS
The Theory of Information and Coding
Second Edition
R. J. McELIECE
California Institute of Technology
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:08:50 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
The Pitt Building, Trumpington Street, Cambridge, United Kingdom
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
©
Cambridge University Press 2004
First published in printed format
2002
ISBN 978-0-511-60626-7 OCeISBN
ISBN 0-521-00095-5 hardback
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:08:50 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
Contents
Editor'sstatementpageviii
Sectioneditor'sforewordix
Prefacetothe®rsteditionx
Prefacetothesecondeditionxii
Introduction1
Problems12
Notes13
Part one: Information theory
1Entropyandmutualinformation17
1.1Discreterandom variables17
1.2Discreterandom vectors33
1.3Nondiscreterandom variablesandvectors37
Problems44
Notes49
2Discretememorylesschannelsandtheircapacity±cost
functions50
2.1Thecapacity±costfunction50
2.2Thechannelcodingtheorem
Problems68
Notes73
3
Discrete memoryless sources and their rate-distortion
functions75
3.1Therate-distortionfunction75
3.2Thesourcecodingtheorem
58
84
Problems91
Notes93
v
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:09:19 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
123
131
vi
4
Contents
TheGaussianchannelandsource95
4.1TheGaussianchannel95
4.2TheGaussiansource99
Problems105
Notes110
5Thesource±channelcodingtheorem112
Problems120
Notes122
6Surveyofadvancedtopicsforpartone123
6.1Introduction123
6.2Thechannelcodingtheorem
6.3Thesourcecodingtheorem
Part two: Coding theory
7Linearcodes139
7.1Introduction:Thegeneratorandparity-checkmatrices139
7.2Syndromedecodingonq-arysymmetricchannels143
7.3Hamminggeometryandcodeperformance146
7.4Hammingcodes148
7.5Syndromedecodingongeneralq-arychannels149
7.6WeightenumeratorsandtheMacWilliamsidentities153
Problems158
Notes165
8Cycliccodes167
8.1Introduction167
8.2Shift-registerencodersforcycliccodes181
8.3CyclicHammingcodes195
8.4Burst-errorcorrection199
8.5Decodingburst-errorcorrectingcycliccodes215
Problems220
Notes228
9BCH,Reed±Solomon,andrelatedcodes230
9.1Introduction230
9.2BCHcodesascycliccodes234
9.3DecodingBCHcodes,Partone:thekeyequation236
9.4Euclid'salgorithm forpolynom ials244
9.5DecodingBCHcodes,Parttwo:thealgorithms249
9.6Reed±Solomoncodes253
9.7Decodingwhenerasuresarepresent266
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:09:19 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
Preface
vii
9.8The(23,12)Golaycode277
Problems282
Notes292
10Convolutionalcodes293
10.1Introduction293
10.2Statediagrams,trellises,andViterbidecoding300
10.3Pathenumeratorsanderrorbounds307
10.4Sequentialdecoding313
Problems322
Notes329
11Variable-lengthsourcecoding330
11.1Introduction330
11.2Uniquelydecodablevariable-lengthcodes331
11.3Matchingcodestosources334
11.4 The construction of optimal UD codes (Huffman's
algorithm)337
Problems342
Notes345
12SurveyofadvancedtopicsforParttwo347
12.1Introduction347
12.2Blockcodes347
12.3Convolutionalcodes357
12.4Acomparisonofblockandconvolutionalcodes359
12.5Sourcecodes363
Appendices
AProbabilitytheory366
BConvexfunctionsandJensen'sinequality370
CFinite®elds375
DPathenumerationindirectedgraphs380
References
1Generalreferencetextbooks384
2 An annotated bibliography of the theory of information and
coding384
3Originalpaperscitedinthetext386
IndexofTheorems388
Index390
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:09:19 GMT 2010.
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009
Editor's statement
A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely to
survive changes of style and of interest.
This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in no
particular order, but will be organized into sections, each one comprising a
recognizable branch of present-day mathematics. Numbers of volumes and
sections will be reconsidered as times and needs change.
It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in ®elds in which it can be applied but
where it has not yet penetrated because of insuf®cient information.
Information theory is a success story in contemporary mathematics. Born
out of very real engineering problems, it has left its imprint on such far-¯ung
endeavors as the approximation of functions and the central limit theorem of
probability. It is an idea whose time has come.
Most mathematicians cannot afford to ignore the basic results in this ®eld.
Yet, because of the enormous outpouring of research, it is dif®cult for anyone
who is not a specialist to single out the basic results and the relevant material.
Robert McEliece has succeeded in giving a presentation that achieves this
objective, perhaps the ®rst of its kind.
Gian-Carlo Rota
viii
Downloaded from Cambridge Books Online by IP 222.66.175.241 on Wed Nov 17 08:09:26 GMT 2010.
http://dx.doi.org/10.1017/CBO9780511606267.001
Cambridge Books Online © Cambridge University Press, 2010
Cambridge Books Online © Cambridge University Press, 2009