logo资料库

使用keras实现densenet和Xception的模型融合.pdf

第1页 / 共2页
第2页 / 共2页
资料共2页,全文预览结束
使用使用keras实现实现densenet和和Xception的模型融合 的模型融合 我正在参加天池上的一个竞赛,刚开始用的是DenseNet121但是效果没有达到预期,因此开始尝试使用模型融合,将Desenet 和Xception融合起来共同提取特征。 代码如下: def Multimodel(cnn_weights_path=None,all_weights_path=None,class_num=5,cnn_no_vary=False): ''' 获取densent121,xinception并联的网络 此处的cnn_weights_path是个列表是densenet和xception的卷积部分的权值 ''' input_layer=Input(shape=(224,224,3)) dense=DenseNet121(include_top=False,weights=None,input_shape=(224,224,3)) xception=Xception(include_top=False,weights=None,input_shape=(224,224,3)) #res=ResNet50(include_top=False,weights=None,input_shape=(224,224,3)) if cnn_no_vary: for i,layer in enumerate(dense.layers): dense.layers[i].trainable=False for i,layer in enumerate(xception.layers): xception.layers[i].trainable=False #for i,layer in enumerate(res.layers): # res.layers[i].trainable=False if cnn_weights_path!=None: dense.load_weights(cnn_weights_path[0]) xception.load_weights(cnn_weights_path[1]) #res.load_weights(cnn_weights_path[2]) dense=dense(input_layer) xception=xception(input_layer) #对dense_121和xception进行全局最大池化 top1_model=GlobalMaxPooling2D(data_format='channels_last')(dense) top2_model=GlobalMaxPooling2D(data_format='channels_last')(xception) #top3_model=GlobalMaxPool2D(input_shape=res.output_shape)(res.outputs[0]) print(top1_model.shape,top2_model.shape) #把top1_model和top2_model连接起来 t=keras.layers.Concatenate(axis=1)([top1_model,top2_model]) #第一个全连接层 top_model=Dense(units=512,activation="relu")(t) top_model=Dropout(rate=0.5)(top_model) top_model=Dense(units=class_num,activation="softmax")(top_model) model=Model(inputs=input_layer,outputs=top_model) #加载全部的参数 if all_weights_path: model.load_weights(all_weights_path) return model 如下进行调用: if __name__=="__main__": weights_path=["./densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5", "xception_weights_tf_dim_ordering_tf_kernels_notop.h5"] model=Multimodel(cnn_weights_path=weights_path,class_num=6) plot_model(model,to_file="G:/model.png") 最后生成的模型图如下:有点长,可以不看 需要注意的一点是,如果dense=dense(input_layer)这里报错的话,说明你用的是tensorflow1.4以下的版本,解决的方法就是 1、升级tensorflow到1.4以上 2、改代码: def Multimodel(cnn_weights_path=None,all_weights_path=None,class_num=5,cnn_no_vary=False):
''' 获取densent121,xinception并联的网络 此处的cnn_weights_path是个列表是densenet和xception的卷积部分的权值 ''' dir=os.getcwd() input_layer=Input(shape=(224,224,3)) dense=DenseNet121(include_top=False,weights=None,input_tensor=input_layer, input_shape=(224,224,3)) xception=Xception(include_top=False,weights=None,input_tensor=input_layer, input_shape=(224,224,3)) #res=ResNet50(include_top=False,weights=None,input_shape=(224,224,3)) if cnn_no_vary: for i,layer in enumerate(dense.layers): dense.layers[i].trainable=False for i,layer in enumerate(xception.layers): xception.layers[i].trainable=False #for i,layer in enumerate(res.layers): # res.layers[i].trainable=False if cnn_weights_path!=None: dense.load_weights(cnn_weights_path[0]) xception.load_weights(cnn_weights_path[1]) #print(dense.shape,xception.shape) #对dense_121和xception进行全局最大池化 top1_model=GlobalMaxPooling2D(input_shape=(7,7,1024),data_format='channels_last')(dense.output) top2_model=GlobalMaxPooling2D(input_shape=(7,7,1024),data_format='channels_last')(xception.output) #top3_model=GlobalMaxPool2D(input_shape=res.output_shape)(res.outputs[0]) print(top1_model.shape,top2_model.shape) #把top1_model和top2_model连接起来 t=keras.layers.Concatenate(axis=1)([top1_model,top2_model]) #第一个全连接层 top_model=Dense(units=512,activation="relu")(t) top_model=Dropout(rate=0.5)(top_model) top_model=Dense(units=class_num,activation="softmax")(top_model) model=Model(inputs=input_layer,outputs=top_model) #加载全部的参数 if all_weights_path: model.load_weights(all_weights_path) return model 这个bug我也是在服务器上跑的时候才出现的,找了半天,而实验室的cuda和cudnn又改不了,tensorflow无法升级,因此只 能改代码了。 如下所示,是最后画出的模型图:(很长,底下没内容了) 以上这篇使用keras实现densenet和Xception的模型融合就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望 大家多多支持软件开发网。 您可能感兴趣的文章:使用Keras预训练模型ResNet50进行图像分类方式使用Keras 实现查看model weights .h5 文件的内容 您可能感兴趣的文章 keras-siamese用自己的数据集实现详解
分享到:
收藏