logo资料库

from Mathematics to Generic Programming.pdf

第1页 / 共476页
第2页 / 共476页
第3页 / 共476页
第4页 / 共476页
第5页 / 共476页
第6页 / 共476页
第7页 / 共476页
第8页 / 共476页
资料共476页,剩余部分请下载后查看
About This eBook
Title Page
Copyright Page
Contents
Acknowledgments
About the Authors
Authors’ Note
1. What This Book Is About
1.1 Programming and Mathematics
1.2 A Historical Perspective
1.3 Prerequisites
1.4 Roadmap
2. The First Algorithm
2.1 Egyptian Multiplication
2.2 Improving the Algorithm
2.3 Thoughts on the Chapter
3. Ancient Greek Number Theory
3.1 Geometric Properties of Integers
3.2 Sifting Primes
3.3 Implementing and Optimizing the Code
3.4 Perfect Numbers
3.5 The Pythagorean Program
3.6 A Fatal Flaw in the Program
3.7 Thoughts on the Chapter
4. Euclid’s Algorithm
4.1 Athens and Alexandria
4.2 Euclid’s Greatest Common Measure Algorithm
4.3 A Millennium without Mathematics
4.4 The Strange History of Zero
4.5 Remainder and Quotient Algorithms
4.6 Sharing the Code
4.7 Validating the Algorithm
4.8 Thoughts on the Chapter
5. The Emergence of Modern Number Theory
5.1 Mersenne Primes and Fermat Primes
5.2 Fermat’s Little Theorem
5.3 Cancellation
5.4 Proving Fermat’s Little Theorem
5.5 Euler’s Theorem
5.6 Applying Modular Arithmetic
5.7 Thoughts on the Chapter
6. Abstraction in Mathematics
6.1 Groups
6.2 Monoids and Semigroups
6.3 Some Theorems about Groups
6.4 Subgroups and Cyclic Groups
6.5 Lagrange’s Theorem
6.6 Theories and Models
6.7 Examples of Categorical and Non-categorical Theories
6.8 Thoughts on the Chapter
7. Deriving a Generic Algorithm
7.1 Untangling Algorithm Requirements
7.2 Requirements on A
7.3 Requirements on N
7.4 New Requirements
7.5 Turning Multiply into Power
7.6 Generalizing the Operation
7.7 Computing Fibonacci Numbers
7.8 Thoughts on the Chapter
8. More Algebraic Structures
8.1 Stevin, Polynomials, and GCD
8.2 Göttingen and German Mathematics
8.3 Noether and the Birth of Abstract Algebra
8.4 Rings
8.5 Matrix Multiplication and Semirings
8.6 Application: Social Networks and Shortest Paths
8.7 Euclidean Domains
8.8 Fields and Other Algebraic Structures
8.9 Thoughts on the Chapter
9. Organizing Mathematical Knowledge
9.1 Proofs
9.2 The First Theorem
9.3 Euclid and the Axiomatic Method
9.4 Alternatives to Euclidean Geometry
9.5 Hilbert’s Formalist Approach
9.6 Peano and His Axioms
9.7 Building Arithmetic
9.8 Thoughts on the Chapter
10. Fundamental Programming Concepts
10.1 Aristotle and Abstraction
10.2 Values and Types
10.3 Concepts
10.4 Iterators
10.5 Iterator Categories, Operations, and Traits
10.6 Ranges
10.7 Linear Search
10.8 Binary Search
10.9 Thoughts on the Chapter
11. Permutation Algorithms
11.1 Permutations and Transpositions
11.2 Swapping Ranges
11.3 Rotation
11.4 Using Cycles
11.5 Reverse
11.6 Space Complexity
11.7 Memory-Adaptive Algorithms
11.8 Thoughts on the Chapter
12. Extensions of GCD
12.1 Hardware Constraints and a More Efficient Algorithm
12.2 Generalizing Stein’s Algorithm
12.3 Bézout’s Identity
12.4 Extended GCD
12.5 Applications of GCD
12.6 Thoughts on the Chapter
13. A Real-World Application
13.1 Cryptology
13.2 Primality Testing
13.3 The Miller-Rabin Test
13.4 The RSA Algorithm: How and Why It Works
13.5 Thoughts on the Chapter
14. Conclusions
Further Reading
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Appendix A. Notation
Examples
Implication and the Contrapositive
Appendix B. Common Proof Techniques
B.1 Proof by Contradiction
B.2 Proof by Induction
B.3 The Pigeonhole Principle
Appendix C. C++ for Non-C++ Programmers
C.1 Template Functions
C.2 Concepts
C.3 Declaration Syntax and Typed Constants
C.4 Function Objects
C.5 Preconditions, Postconditions, and Assertions
C.6 STL Algorithms and Data Structures
C.7 Iterators and Ranges
C.8 Type Aliases and Type Functions with using in C++11
C.9 Initializer Lists in C++11
C.10 Lambda Functions in C++11
C.11 A Note about inline
Bibliography
Index
Photo Credits
Code Snippets
About This eBook ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site. Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single- column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.
From Mathematics to Generic Programming Alexander A. Stepanov Daniel E. Rose Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419. For government sales inquiries, please contact governmentsales@pearsoned.com. For questions about sales outside the United States, please contact international@pearsoned.com. Visit us on the Web: informit.com/aw Library of Congress Cataloging-in-Publication Data Stepanov, Alexander A. From mathematics to generic programming / Alexander A. Stepanov, Daniel E. Rose. pages cm Includes bibliographical references and index. ISBN 978-0-321-94204-3 (pbk. : alk. paper) 1. Generic programming (Computer science)—Mathematics. 2. Computer algorithms. I. Rose, Daniel E. II. Title. QA76.6245.S74 2015 005.1'1—dc23 2014034539 Copyright © 2015 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290. Photo credits are listed on page 293. ISBN-13: 978-0-321-94204-3 ISBN-10: 0-321-94204-3 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana. First printing, November 2014
Contents Acknowledgments About the Authors Authors’ Note 1 What This Book Is About 1.1 Programming and Mathematics 1.2 A Historical Perspective 1.3 Prerequisites 1.4 Roadmap 2 The First Algorithm 2.1 Egyptian Multiplication 2.2 Improving the Algorithm 2.3 Thoughts on the Chapter 3 Ancient Greek Number Theory 3.1 Geometric Properties of Integers 3.2 Sifting Primes 3.3 Implementing and Optimizing the Code 3.4 Perfect Numbers 3.5 The Pythagorean Program 3.6 A Fatal Flaw in the Program 3.7 Thoughts on the Chapter 4 Euclid’s Algorithm 4.1 Athens and Alexandria 4.2 Euclid’s Greatest Common Measure Algorithm 4.3 A Millennium without Mathematics 4.4 The Strange History of Zero
4.5 Remainder and Quotient Algorithms 4.6 Sharing the Code 4.7 Validating the Algorithm 4.8 Thoughts on the Chapter 5 The Emergence of Modern Number Theory 5.1 Mersenne Primes and Fermat Primes 5.2 Fermat’s Little Theorem 5.3 Cancellation 5.4 Proving Fermat’s Little Theorem 5.5 Euler’s Theorem 5.6 Applying Modular Arithmetic 5.7 Thoughts on the Chapter 6 Abstraction in Mathematics 6.1 Groups 6.2 Monoids and Semigroups 6.3 Some Theorems about Groups 6.4 Subgroups and Cyclic Groups 6.5 Lagrange’s Theorem 6.6 Theories and Models 6.7 Examples of Categorical and Non-categorical Theories 6.8 Thoughts on the Chapter 7 Deriving a Generic Algorithm 7.1 Untangling Algorithm Requirements 7.2 Requirements on A 7.3 Requirements on N 7.4 New Requirements 7.5 Turning Multiply into Power 7.6 Generalizing the Operation
7.7 Computing Fibonacci Numbers 7.8 Thoughts on the Chapter 8 More Algebraic Structures 8.1 Stevin, Polynomials, and GCD 8.2 Göttingen and German Mathematics 8.3 Noether and the Birth of Abstract Algebra 8.4 Rings 8.5 Matrix Multiplication and Semirings 8.6 Application: Social Networks and Shortest Paths 8.7 Euclidean Domains 8.8 Fields and Other Algebraic Structures 8.9 Thoughts on the Chapter 9 Organizing Mathematical Knowledge 9.1 Proofs 9.2 The First Theorem 9.3 Euclid and the Axiomatic Method 9.4 Alternatives to Euclidean Geometry 9.5 Hilbert’s Formalist Approach 9.6 Peano and His Axioms 9.7 Building Arithmetic 9.8 Thoughts on the Chapter 10 Fundamental Programming Concepts 10.1 Aristotle and Abstraction 10.2 Values and Types 10.3 Concepts 10.4 Iterators 10.5 Iterator Categories, Operations, and Traits 10.6 Ranges
分享到:
收藏