Thisispage
Printer:Opaquethis
TheSpikeResponseModel
WulframGerstner
Thisispage
Printer:Opaquethis
MNN
September ,
.TheSpikeResponseModel
ABSTRACTAdescriptionofneuronalactivityonthelevelofionchannels,
asintheHodgkin-Huxleymodel,leadstoasetofcouplednonlineardier-
entialequationswhicharediculttoanalyze.Inthispaper,wepresenta
conceptualframeworkforareductionofthenonlinearspikedynamicsto
athresholdprocess.Spikesoccurifthemembranepotentialu(t)reachesa
threshold#.Thevoltageresponsetospikeinputisdescribedbythepostsy-
napticpotential.Postsynapticpotentialsofseveralinputspikesareadded
linearlyuntilureaches#.Theoutputpulseitselfandthereset/refractory
periodwhichfollowthepulsearedescribedbyafunction.Sinceand
canbeinterpretedasresponsekernels,theresultingmodeliscalledthe
SpikeResponseModel(SRM).AfterashortreviewoftheHodgkin-Huxley
modelweshowthat(i)Hodgkin-Huxleydynamicswithtime-dependent
inputcanbereproducedtoahighdegreeofaccuracybytheSRM;(ii)
thesimpleintegrate-and-reneuronisaspecialcaseoftheSpikeResponse
Model;(iii)compartmentalneuronswithapassivedendritictreeanda
thresholdprocessforspikegenerationcanbetreatedinSRM-framework;
(iv)smallnonlinearitiesleadtointeractionsbetweenspikestobedescribed
byhigher-orderkernels.
Introduction
Thesuccessfulmathematicaldescriptionofactionpotentialsinthegiant
axonofthesquidbyHodgkinandHuxleyin hasleadtoawhole
seriesofmodelingpaperswhichtrytodescribeindetailthedynamicsof
variousionchannelsonthesomaanddendritesduringspikereceptionand
spikeemission.Withmoderncomputersitisnowpossibletonumerically
integratemodelswith to typesofionchannelandhundredsofspa-
tialcompartments[YKA ,TWMM ,BB ]andreproduceexperimental
ndingstoahighdegreeofaccuracy.Ontheotherhand,itisoftendi-
culttograspintuitivelytheessentialphenomenaofneuronaldynamicsfrom
thesemodels.Inparticular,itisoutofreachtounderstandthesemodels
analytically.Moreover,inanetworksettingthequestionariseswhetherall
thedetailsdescribedincompartmentalmodelsarenecessarytounderstand
thecomputationinlargepopulationsofneurons.
Forananalyticalunderstandingofnetworksofspikingneurons,asimpli-
eddescriptionofneuronaldynamicsisthereforedesirable[AK ,Abb ].
Forthisreasonintegrate-and-remodels[Lap ,Ste,Tuc]havebe-
comeincreasinglypopularfortheinvestigationofprinciplesofcortical
dynamicsandfunction,e.g.,[MS ,AvV ,Tre ,SNS ,BH ].The
reductionofdetailedneuronmodelstoastandardintegrate-and-reunit
requiressimplicationsinatleasttworespects.First,thenonlineardynam-
icsofspikegeneration[HH,RE ]mustbereducedtoaleakyintegrator
withthresholdring[AK ].Second,eectsofthespatialstructureofthe
neuron[Ral,Tuc,AFG ,BT ]mustbereducedtosomeeective
input[Abb ].
.TheSpikeResponseModel
Inthispaperweaddressbothissuesfromthesystematicpointofviewofa
responsekernelexpansion.ItisshownthatspikegenerationintheHodgkin-
Huxleymodelcanbereproducedtoahighdegreeofaccuracybyasingle-
variablethresholdmodel[KGvH ].Theproblemofspatialstructureis
studiedforamulti-compartmentalintegrate-and-remodelwithapassive
dendritictree[AFG ,BT ]andactivecurrentsatthesoma.Inthiscase,
themodeldynamicscanbesolvedandsystematicallyreducedtoasingle-
variablemodelwithresponsekernels.
Afterthereductionoftheintricateneuronaldynamicstoathreshold
model,itisthenpossibletostudyanalyticallythedynamicsofnetworks
ofneurons.Ithasbeenshownpreviouslythatinalargenetworkofmodel
neuronswithhomogeneouscouplings,thestabilityofcoherent,incoherent,
orpartiallycoherentstatescanbeunderstoodinatransparentmanner
[AvV ,GvH ,Ger ,GvHC ,BH ].Moreover,thecollectiveresponse
ofapopulationofspikingneuronstoacommontime-dependentinputcan
beanalyzed[Ger ].Themathematicalconsiderationsthatarenecessary
forareductionofthehighlynonlinearHodgkin-Huxleyequationstoa
single-variablethresholdmodelarethereforeworththeeort.
Thechapterisorganizedasfollows.Westartinsectionwithareview
ofthestandardHodkgin-Huxleymodel.Thefourdierentialequationsof
HodgkinandHuxleygiveanaccuratedescriptionofneuronalspikinginthe
giantaxonofthesquid.Thedrawbackisthattheyarehighlynon-linear
andthereforediculttoanalyzemathematically.Wethereforeaimfora
simplerphenomenologicaldescription.Themethodweproposeisbasedon
spikeresponsekernelsandprovidesabiologicallytransparentdescription
oftheessentialeectsduringspiking.Inthesecondpartofsection,we
willseethattheSpikeResponseModel(SRM),derivedfromtheHodgkin-
HuxleymodelbytheSpikeResponseMethod,canreproduceupto
percentofthespiketimesoftheHodkgin-Huxleymodelcorrectly.
AshortsummaryofthemathematicsoftheSpikeResponseModelis
presentedinsection.Anotherwell-knownmodelofneuronalspikingisthe
integrate-and-remodelwhichisreviewedinsection.Weshowthatthe
integrate-and-reisinfactofspecialcaseoftheSpikeResponseModel.The
mappingfromtheintegrate-and-remodeltotheSpikeResponseModelis
discussedinsomedetailinsections..and..Insectionweaddressthe
questionofspatialstructure.Weshowthatinthecaseofalineardendritic
treethedynamicscanbewellcapturedbyspikeresponsekernels.Finally
insectionwediscussweaklynon-lineareects.Throughoutthetext,the
generalargumentsareinteruptedbyexamplesintendedtoillustratethe
mainresults.
-
+
C
R
K
I
Na
-
+
+
-
+
Na
outside
K
Cl
inside
-
.TheSpikeResponseModel
FIGURE.SchematicdiagramfortheHodgkin-Huxleymodel.Takenfrom
[Ger ].
Hodgkin-Huxleymodel
TheclassicdescriptionofneuronalspikingdatesbacktoHodgkinand
Huxley[HH]whosummarizedtheirextensiveexperimentalstudieson
thegiantaxonofthesquidwithfourdierentialequations.Arstand
fundamentalequationdescribestheconservationofelectriccurrents.Then
therearethreefurtherdierentialequationswhichdescribethedynamicsof
sodiumandpotassiumionchannels.Modernmodelsofneuronaldynamics
makeuseofthesametypeofequations,butofteninvolvemanymore
dierentionchanneltypes.Theionchannelsmaybelocatedondierent
compartmentsofaspatiallyextendedneuronmodel.Asingleneuronmay
thenbedescribedbyhundredsofcouplednon-lineardierentialequations.
InthissectionwesticktothestandardHodgkin-Huxleymodelwithout
spatialstructureanduseitasareferencemodeltostudythedynamics
ofspikegeneration.IntherstsubsectionwereviewtheHodgkin-Huxley
equations.Inthesecondsubsectionwereducethenonlineardynamicsof
theHodgkin-Huxleymodeltoathresholdmodelwithasinglevariable
u(t).ThisreductionwillbethebasisforadiscussionoftheSpikeResponse
ModelinSections-.
.Denitionofthemodel
TheHodgkin-HuxleymodelcanbeunderstoodwiththehelpofFig..
Thesemipermeablecellmembraneseparatestheinteriorofthecellfrom
theextracellularliquid.Duetothemembrane'sselectivepermeabilityand
alsobecauseofactiveiontransportthroughthecellmembrane,theion
concentrationinsidethecellisdierentfromtheoneintheextracellular
liquid.Thedierenceinconcentrationgeneratesanelectricalpotentialbe-
tweentheinteriorandtheexteriorofthecell.Thecellmembraneactslike
acapacitorwhichhasbeenchargedbyabattery.IfaninputcurrentI(t)
isinjectedintothecell,itmayaddfurtherchargeonthecapacitor,orleak
throughthechannelsinthecellmembrane.
1.0
m
n
-50.0
10.0
5.0
h
m
-50.0
0.0
50.0
100.0
50.0
100.0
h
n
0.0
u [mV]
)
u
(
0
x
0.5
]
s
m
[
)
u
(
τ
u [mV]
0.0
-100.0
0.0
-100.0
.TheSpikeResponseModel
a)
b)
FIGURE.Equilibriumfunction(a)andtimeconstant(b)forthethreevari-
ablesm;n;hintheHodgkin-Huxleymodel.Takenfrom[Ger ].
Letusnowtranslatetheaboveconsiderationsintomathematicalequa-
tions.Theconservationofelectricchargeonapieceofmembraneimplies
thattheappliedcurrentI(t)maybesplitinacapacitivecurrentICwhich
chargesthecapacitorCandfurthercomponentsIkwhichdiusethrough
theionchannels.Thus
I(t)=IC+XkIk
(.)
wherethesumrunsoverallionchannels.InthestandardHodgkin-Huxley
modelthereareonlythreetypesofchannel:asodiumchannelwithindex
Na,apotassiumchannelwithindexKandanunspecicleakagechannel
withresistanceR;cf.Fig..FromthedenitionofacapacityC=Q=u
whereQisachargeanduthevoltageacrossthecapacitor,wendthe
chargingcurrentIC=Cdu=dt.Hencefrom(.)
Cdudt=XkIk+I(t):
(.)
Inbiologicalterms,uisthevoltageacrossthemembraneandPkIkisthe
sumoftheioniccurrentswhichpassthroughthecellmembrane.
Asmentionedabove,theHodgkin-Huxleydescribesthreetypesofchan-
nel.Allchannelsmaybecharacterizedbytheirresistanceor,equivalently,
bytheconductance.Theleakagechannelisdescribedbyavoltage-inde-
pendentconductancegL==R;theconductanceoftheotherionchannels
isvoltagedependent.Ifthechannelsarefullyopen,theytransmitcurrents
withamaximumconductancegNaorgK,respectively.Normally,however,
thechannelsarepartiallyblocked.Theremovaloftheblockisvoltagede-
pendentandisdescribedbyadditionalvariablesm;n,andh.Thecombined
actionofmandhcontrolstheNachannels.TheKgatesarecontrolledbyn.
Specically,HodgkinandHuxleyformulatedthethreecurrentcomponents
as XkIk=gNamh(uVNa)+gKn(uVK)+gL(uVL):
(.)
TheparametersVNa,VK,andVLarecalledreversalpotentialssincethe
.TheSpikeResponseModel
x
ux
gx
mV mS/cm
Na
mS/cm
K
-mV
.mV .mS/cm
L
x
x(u=mV)
x(u=mV)
( : : u)=[exp( :u)]
n
:exp(u= )
m(: :u)=[exp(: :u)]
exp(u=)
: exp(u= )
h
=[exp( :u)+]
TABLE..TheparametersoftheHodgkin-Huxleyequations.Themembrane
capacityisC=F/cm.
directionofacurrentIkchangeswhenucrossesVk.Reversalpotentials
andconductancesareempiricalparametersandsummarizedintable.
Thethreevariablesm,n,andhevolveaccordingtothedierentialequa-
tions
_m=m(u)(m)m(u)m
_n=n(u)(n)n(u)n
_h=h(u)(h)h(u)h
(.)
with_m=dm=dt,andsoon.Theand,givenintable,areempirical
functionsofuthathavebeenadjustedbyHodgkinandHuxleytotthe
dataofthegiantaxonofthesquid.Eqs.(.)-(.)denetheHodgkin-
Huxleymodel.
Eachofthethreeequations(.)mayalsobewrittenintheform
_x=x(u)[xx (u)]
(.)
wherexstandsform,n,orh.Forxedvoltageu,thevariablexap-
proachesthevaluex (u)withatimeconstantx(u).Theasymptoticvalue
x (u)andthetimeconstantx(u)aregivenbythetransformationx (u)=
x(u)=[x(u)+x(u)]andx(u)=[x(u)+x(u)].Usingtheparame-
tersgivenbyHodgkinandHuxley[HH],wehaveplottedinFig.the
functionsx (u)andx(u).
..Example:Spikegeneration
WeseefromFig.athatm andn increasewithuwhereash decreases.
Thus,ifsomeexternalinputcausesthemembranevoltagetorise,theion
conductanceofsodium(Na)increasesduetoincreasingmandpositive
sodiumionsowintothecell.Thisraisesthemembranepotentialeven
further.Ifthispositivefeedbackislargeenough,anactionpotentialis
initiated.
V
m
=
)
t
(
U
5
10
15
20
0
20
25
30
-5
80
60
40
20
0
15
10
5
0
15
10
100
-10
V
m
=
)
t
(
.TheSpikeResponseModel
a)
b)
t=msv
t=ms
FIGURE.a)Actionpotential.TheHodgkin-Huxleymodelhasbeenstimulated
byashort,butstrong,currentpulsebeforet= .Thetimecourseofthemem-
branepotentialu(t)fort> showstheactionpotential(positivepeak)followed
byarelativerefractoryperiodwherethepotentialisbelowtherestingpoten-
tial.Therestingpotentialhasbeensettozero.Inthespikeresponseframework,
thetimecourseu(t)oftheactionpotentialfort> denesthekernel(t).b)
Thresholdeectintheinitiationofanactionpotential.Acurrentpulseofms
durationhasbeenappliedatt= ms.Foracurrentamplitudeof. A/cm,
anactionpotentialwithanamplitudeofabout mVasinaisinitiated(solid
line,thepeakoftheactionpotentialisoutofbounds).Ifthestimulatingcurrent
pulseisslightlyweaker(. A/cm)noactionpotentialisemitted(dashedline)
andthevoltagevstaysalwaysbelow mV.Notethatthevoltagescaleinbis
dierentfromtheoneina.Takenfrom[KGvH ].
Athighvaluesofuthesodiumconductanceisshutoduetothefactor
h.NotefromFig.bthathisalwayslargerthanm.Thusthevariableh
whichclosesthechannelsreactsmoreslowlytothevoltageincreasethan
thevariablemwhichopensthechannel.Onthesameslowertimescale,the
potassium(K)currentsetsin.Sinceitisacurrentinoutwarddirection,
itlowersthepotential.Theoveralleectofthesodiumandpotassium
currentsisashortactionpotentialfollowedbyanegativeovershoot.
InFig.aweshowthetimecourseofthemembranevoltageu(t)during
anactionpotential.Thespikehasbeeninitiatedbyashortcurrentpulse
ofmsdurationappliedatt<