logo资料库

2008年广东省肇庆市中考数学真题及答案.doc

第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
资料共8页,全文预览结束
A
B
2008 年广东省肇庆市中考数学真题及答案 说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的 4 个选项中, 只有一项是符合题目要求的.) 1.一个正方体的面共有( ) A.1 个 B.2 个 C.4 个 D.6 个 2.数据 1,1,2,2,3,3,3 的极差是( ) A.1 B.2 3. 3 的绝对值是( ) A.3 B. 3 4.一个正方形的对称轴共有( ) C.3 C. 1 3 D.6 D. 1 3 A.1 条 B.2 条 C.4 条 D.无数条 5.若 a 3 b ,则 ab  的值是( ) A.3 B. 3 C.0 D.6 6.如图 1,AB是⊙O的直径,∠ABC=30°,则∠BAC =( ) A.90° B.60° C.45° D.30° 7.如图 2,箭头表示投影线的方向,则图中圆柱体的正投影是( A.圆 B.圆柱 C.梯形 ) D.矩形 8.下列式子正确的是( ) A. 2a >0 B. 2a ≥0 C.a+1>1 D.a―1>1 9.在直角坐标系中,将点 P(3,6)向左平移 4 个单位长度,再向下平移 8 个单位长 度后,得到的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.从 n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃 K 的概率为 1 5 ,则 n=( )
A.54 B.52 C.10 D.5 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.) 11.因式分解: 2 x 2  x  1 = . 12.如图 3,P是∠AOB的角平分线上的一点,PC⊥OA于点 C,PD⊥OB于点 D,写出图中一对相等的线段( 只 需 写 出 一 对 即 可 ) . 13.圆的半径为 3cm,它的内接正三角形的边长为 . 14.边长为5cm 的菱形,一条对角线长是 6cm,则另一条对角线的长是 . 15.已知 21  , 2 22  , 32 =8, 42 =16,2 5 =32,…… 4 观察上面规律,试猜想 20082 的末位数是 . 三、解答题(本大题共 10 小题,共 75 分.解答应写出文字说明,证明过程或演 算步骤.) 16.(本小题满分 6 分) 计算: )3( 0 11  2 1 2  . 17.(本小题满分 6 分) 在 Rt△ABC中,∠C = 90°,a =3 ,c =5,求 sinA和 tanA的值. 18.(本小题满分 6 分) 解不等式: 10 x  20(3  x ) ≥70.
19.(本小题满分 7 分) 如图 4, E、F、G分别是等边△ABC的边 AB、BC、AC的中点. (1) 图中有多少个三角形? (2) 指出图中一对全等三角形,并给出证明. 20.(本小题满分 7 分) 在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约 800 千米,南线的路程约 80 千米,走南线的车队在西线车队出发 18 小时后立刻启程,结果 两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间. 21.(本小题满分 7 分) 如图 5,在等腰 Rt△ABC中,∠C=90°,正方形 DEFG的顶点 D在边 AC上,点 E、F在 边 AB上,点 G在边 BC上. (1)求证 AE=BF; (2)若 BC= 2 cm,求正方形 DEFG的边长. 22.(本小题满分 8 分) 已知点 A(2,6)、B(3,4)在某个反比例函数的图象上. (1) 求此反比例函数的解析式; (2)若直线 y  与线段 AB相交,求 m的取值范围. mx
23.(本小题满分8分) 在 2008 北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下 (单位:环): 甲 10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2 乙 9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7 (1) 两名运动员射击成绩的平均数分别是多少? (2) 哪位运动员的发挥比较稳定? (参考数据: 0.2 2  3.0 2  2 2.0  2 4.0  2 1  2 6.0  2 3.0  2 6.0 =2.14 , 2 1.0  2 3.0  2 2.0  2 1.0  2 9.0  2 2.0  2 2.0  2 5.0  2 4.0  2 1.0 =1.46) 24.(本小题满分 10 分) 如图 6,在 Rt△ABC中,∠ABC=90°,D是 AC的中点, ⊙O经过 A、B、D三点,CB的延长线交⊙O于点 E. (1) 求证 AE=CE; (2) EF与⊙O相切于点 E,交 AC的延长线于点 F, 若 CD=CF=2cm,求⊙O的直径; (3)若 CF  (n>0),求 sin∠CAB. CD n 25.(本小题满分 10 分) 已知点 A(a, 1y )、B(2a,y2 )、C(3a,y3 )都在抛物线 y  5 2  x 12 x 上. (1)求抛物线与 x轴的交点坐标; (2)当 a=1 时,求△ABC的面积;
(3)是否存在含有 1y 、y2 、y3 ,且与 a无关的等式?如果存在,试给出一个,并加以 证明;如果不存在,说明理由. 数学试题参考答案和评分标准 一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.) 题号 答案 1 D 2 B 3 A 4 C 5 A 6 B 7 D 8 B 9 C 10 D 二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.) 题号 答案 11 12 13 (x-1)2 PC=PD 3 3 cm (答案不唯一) 14 8cm 15 6 三、解答题(本大题共 10 小题,共 75 分.) 16.(本小题满分 6 分) 1 2 解:原式= ········································································· (3 分) 11  2 =1 ······················································································ (6 分) 17.(本小题满分 6 分) 解:在 Rt △ABC中,c=5,a=3. ∴ ∴ b  sin tan 2 c  aA  c aA  b 2 a  2 5  2 3 4 ·················································· (2 分)   3 5 3 4 ·········································································· 4 分) . ·································································(6 分) 18.(本小题满分 6 分)
解: 10 x  60 x  3 ≥ 70 ,····································································(2 分) x13 ≥130 ,······························································· (4 分) ∴ x ≥10 . ·································································· (6 分) 19.(本小题满分 7 分) 解:(1)图中共有 5 个三角形;······································· (2 分) (2)△CGF ≌△GAE . ·········································(3 分) ∵ △ ABC 是等边三角形,∴ ∠ A ∠C .················ (4 分) ∵ E 、 F 、G 是边 AB 、 BC 、 AC 的中点, ∴AE=AG=CG=CF= 1 2 AB. ································································· (6 分) ∴ △CGF ≌△GAE . ······························································· (7 分) 20.(本小题满分 7 分) 解:设车队走西线所用的时间为 x 小时,依题意得:  800 x 80  解这个方程,得 x 18 ,····································································· (3 分) 20x .··········································································· (6 分) 经检验, 20x 是原方程的解. 答:车队走西线所用的时间为 20 小时.··············································· (7 分) 21.(本小题满分 7 分) 解:(1)∵ 等腰 Rt△ABC中,∠ C 90°, ∴ ∠A=∠B,·························································································(1 分) ∵ 四边形 DEFG是正方形, ∴ DE=GF,∠DEA=∠GFB=90°,························ (2分) ∴ △ADE≌△BGF, ∴ AE=BF. ······················································ (3 分) (2)∵ ∠DEA=90°,∠A=45°, ∴∠ADE=45°.·························································································(4 分) ∴ AE=DE. 同理 BF=GF. ·································································· (5 分) ∴ EF= 1 3 1  AB= 3 BC2 = 1 3  2  2 = 2 3 cm,·············································· (6 分)
∴ 正方形 DEFG的边长为 22.(本小题满分 8 分) 2 cm 3 .································································· (7 分) 解:(1)设所求的反比例函数为 依题意得: 6 = k 2 , y  , k x ∴k=12.··································································································(2 分) 12 .··········································································· (4 分) ∴反比例函数为 y x (2) 设 P(x,y)是线段 AB上任一点,则有 2≤x≤3,4≤y≤6.···················· (6 分) ∵m = y x , ∴ 4 3 ≤m≤ 6 2 . 4 3 所以 m的取值范围是 ≤m≤3.···································································(8 分) 23. (本小题满分 8 分)   10 解: (1) 甲x = 1.10 7.9  乙x = (2)∵ 2 甲s = 1 10 (8.8-9.8)2   8.82.10 8.96.91.10  10 6.96.99.89.9    10    10  8.94.10   2.91.10  =9.8. · (2 分) 3.10  7.92.10  =9.8 . ·············(4 分) [(10-9.8)2+(10.1-9.8)2+(9.6-9.8)2+(9.8-9.8)2+(10.2-9.8)2+ +(10.4-9.8)2+(9.8-9.8)2+(10.1-9.8)2+(9.2-9.8)2]=0.214. ··············· (6 分) 2 乙s = 1 10 [(9.7-9.8)2+(10.1-9.8)2+(10-9.8)2+(9.9-9.8)2+(8.9-9.8)2+(9.6-9.8) 2+(9.6-9.8)2 +(10.3-9.8)2+(10.2-9.8)2+(9.7-9.8)2]=0.146. ∴ 2 甲s > 2 乙s ,∴乙运动员的发挥比较稳定.······················································ (8 分) 24. (本小题满分 10 分) 证明:(1)连接 DE,∵∠ABC=90°∴∠ABE=90°, ∴AE是⊙O直径.·························································· (1 分) ∴∠ADE=90°,∴DE⊥AC.············································· (2 分) 又∵D是 AC的中点,∴DE是 AC的垂直平分线. ∴AE=CE.····································································· (3 分) (2)在△ADE和△EFA中,
∵∠ADE=∠AEF=90°,∠DAE=∠FAE, ∴△ADE∽△EFA.·························································· (4 分) ∴ ∴ AE  AF AE 6  AD AE 2 AE , . ··························································(5 分) ∴AE=2 3 cm. ························································································ (6 分) (3) ∵AE是⊙O直径,EF是⊙O的切线,∴∠ADE=∠AEF=90°, AD  ED DE DF ∴Rt△ADE∽Rt△EDF. ∴ .················································ (7 分) ∵ CF  ,AD=CD,∴CF=nCD,∴DF=(1+n)CD, ∴DE= CD n n1 CD.·················(8 分) 在 Rt△CDE中,CE2 =CD2 +DE2 =CD2 +( n1 CD) 2 =(n+2)CD2 . ∴CE= 2n CD. ···················································································· (9 分) ∵∠CAB=∠DEC,∴sin∠CAB=sin∠DEC = CD CE = 1 n = 2 2 n  2 n  .··················· (10 分) 25.(本小题满分 10 分) 解:(1)由 5 x 2  =0,········································································· (1 分) 得 1 x 0 , x 2 12 x 12 5 .············································································· (2 分) 12 ,0).·······································(3 分) ∴抛物线与 x轴的交点坐标为(0,0)、( 5 (2)当 a=1 时,得 A(1,17)、B(2,44)、C(3,81),································· (4 分) 分别过点 A、B、C作 x轴的垂线,垂足分别为 D、E、F,则有 S  ABC =S 梯形 ADFC 17(  = - S 梯形 ADEB - S 梯形 BEFC ·················································· (5 分)  2)81 2 17(  - 1)44  2 44(  - 1)81  2 ···································· (6 分) =5(个单位面积)····································································· (7 分) (3)如: y 3  (3 y 2  y 1 ) . ····································································· (8 分) 事实上, y 3  )3(5 a 2  12  )3( a =45a2+36a. 3( y  )=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.············· (9 分) 2 y 1 ∴ y 3  (3 y 2  y 1 ) .
分享到:
收藏