2008 年广东省肇庆市中考数学真题及答案
说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的 4 个选项中,
只有一项是符合题目要求的.)
1.一个正方体的面共有(
)
A.1 个
B.2 个
C.4 个
D.6 个
2.数据 1,1,2,2,3,3,3 的极差是(
)
A.1
B.2
3. 3 的绝对值是(
)
A.3
B. 3
4.一个正方形的对称轴共有(
)
C.3
C.
1
3
D.6
D.
1
3
A.1 条
B.2 条
C.4 条
D.无数条
5.若
a
3 b
,则 ab 的值是(
)
A.3
B. 3
C.0
D.6
6.如图 1,AB是⊙O的直径,∠ABC=30°,则∠BAC =(
)
A.90°
B.60°
C.45°
D.30°
7.如图 2,箭头表示投影线的方向,则图中圆柱体的正投影是(
A.圆
B.圆柱
C.梯形
)
D.矩形
8.下列式子正确的是(
)
A. 2a >0
B. 2a ≥0
C.a+1>1
D.a―1>1
9.在直角坐标系中,将点 P(3,6)向左平移 4 个单位长度,再向下平移 8 个单位长
度后,得到的点位于(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10.从 n张互不相同的普通扑克牌中任意抽取一张,抽到黑桃 K 的概率为
1
5
,则 n=(
)
A.54
B.52
C.10
D.5
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.)
11.因式分解:
2
x
2
x
1
=
.
12.如图 3,P是∠AOB的角平分线上的一点,PC⊥OA于点
C,PD⊥OB于点 D,写出图中一对相等的线段( 只 需 写 出 一 对
即 可 )
.
13.圆的半径为 3cm,它的内接正三角形的边长为
.
14.边长为5cm 的菱形,一条对角线长是 6cm,则另一条对角线的长是
.
15.已知
21 ,
2
22 , 32 =8, 42 =16,2 5 =32,……
4
观察上面规律,试猜想 20082 的末位数是
.
三、解答题(本大题共 10 小题,共 75 分.解答应写出文字说明,证明过程或演
算步骤.)
16.(本小题满分 6 分)
计算:
)3(
0
11
2
1
2
.
17.(本小题满分 6 分)
在 Rt△ABC中,∠C = 90°,a =3 ,c =5,求 sinA和 tanA的值.
18.(本小题满分 6 分)
解不等式:
10
x
20(3
x
)
≥70.
19.(本小题满分 7 分)
如图 4, E、F、G分别是等边△ABC的边 AB、BC、AC的中点.
(1) 图中有多少个三角形?
(2) 指出图中一对全等三角形,并给出证明.
20.(本小题满分 7 分)
在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约
800 千米,南线的路程约 80 千米,走南线的车队在西线车队出发 18 小时后立刻启程,结果
两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.
21.(本小题满分 7 分)
如图 5,在等腰 Rt△ABC中,∠C=90°,正方形 DEFG的顶点 D在边 AC上,点 E、F在
边 AB上,点 G在边 BC上.
(1)求证 AE=BF;
(2)若 BC= 2 cm,求正方形 DEFG的边长.
22.(本小题满分 8 分)
已知点 A(2,6)、B(3,4)在某个反比例函数的图象上.
(1) 求此反比例函数的解析式;
(2)若直线
y 与线段 AB相交,求 m的取值范围.
mx
23.(本小题满分8分)
在 2008 北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下
(单位:环):
甲 10
10.1
9.6
9.8
10.2
8.8
10.4
9.8
10.1
9.2
乙 9.7
10.1
10
9.9
8.9
9.6
9.6
10.3
10.2
9.7
(1) 两名运动员射击成绩的平均数分别是多少?
(2) 哪位运动员的发挥比较稳定?
(参考数据: 0.2
2
3.0
2
2
2.0
2
4.0
2
1
2
6.0
2
3.0
2
6.0
=2.14 ,
2
1.0
2
3.0
2
2.0
2
1.0
2
9.0
2
2.0
2
2.0
2
5.0
2
4.0
2
1.0
=1.46)
24.(本小题满分 10 分)
如图 6,在 Rt△ABC中,∠ABC=90°,D是 AC的中点,
⊙O经过 A、B、D三点,CB的延长线交⊙O于点 E.
(1) 求证 AE=CE;
(2) EF与⊙O相切于点 E,交 AC的延长线于点 F,
若 CD=CF=2cm,求⊙O的直径;
(3)若
CF (n>0),求 sin∠CAB.
CD
n
25.(本小题满分 10 分)
已知点 A(a, 1y )、B(2a,y2 )、C(3a,y3 )都在抛物线
y
5 2
x
12
x
上.
(1)求抛物线与 x轴的交点坐标;
(2)当 a=1 时,求△ABC的面积;
(3)是否存在含有 1y 、y2 、y3 ,且与 a无关的等式?如果存在,试给出一个,并加以
证明;如果不存在,说明理由.
数学试题参考答案和评分标准
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.)
题号
答案
1
D
2
B
3
A
4
C
5
A
6
B
7
D
8
B
9
C
10
D
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分.)
题号
答案
11
12
13
(x-1)2
PC=PD
3 3 cm
(答案不唯一)
14
8cm
15
6
三、解答题(本大题共 10 小题,共 75 分.)
16.(本小题满分 6 分)
1
2
解:原式=
········································································· (3 分)
11
2
=1 ······················································································ (6 分)
17.(本小题满分 6 分)
解:在 Rt △ABC中,c=5,a=3.
∴
∴
b
sin
tan
2
c
aA
c
aA
b
2
a
2
5
2
3
4 ·················································· (2 分)
3
5
3
4
·········································································· 4 分)
. ·································································(6 分)
18.(本小题满分 6 分)
解:
10
x
60
x
3
≥ 70 ,····································································(2 分)
x13 ≥130 ,······························································· (4 分)
∴ x ≥10 . ·································································· (6 分)
19.(本小题满分 7 分)
解:(1)图中共有 5 个三角形;······································· (2 分)
(2)△CGF ≌△GAE . ·········································(3 分)
∵ △ ABC 是等边三角形,∴ ∠ A ∠C .················ (4 分)
∵ E 、 F 、G 是边 AB 、 BC 、 AC 的中点,
∴AE=AG=CG=CF=
1
2
AB. ································································· (6 分)
∴ △CGF ≌△GAE . ······························································· (7 分)
20.(本小题满分 7 分)
解:设车队走西线所用的时间为 x 小时,依题意得:
800
x
80
解这个方程,得
x
18
,····································································· (3 分)
20x
.··········································································· (6 分)
经检验, 20x
是原方程的解.
答:车队走西线所用的时间为 20 小时.··············································· (7 分)
21.(本小题满分 7 分)
解:(1)∵ 等腰 Rt△ABC中,∠ C 90°,
∴ ∠A=∠B,·························································································(1 分)
∵ 四边形 DEFG是正方形,
∴ DE=GF,∠DEA=∠GFB=90°,························ (2分)
∴ △ADE≌△BGF,
∴ AE=BF. ······················································ (3 分)
(2)∵ ∠DEA=90°,∠A=45°,
∴∠ADE=45°.·························································································(4 分)
∴ AE=DE.
同理 BF=GF. ·································································· (5 分)
∴ EF=
1
3
1
AB=
3
BC2
=
1
3
2
2
=
2
3
cm,·············································· (6 分)
∴ 正方形 DEFG的边长为
22.(本小题满分 8 分)
2 cm
3
.································································· (7 分)
解:(1)设所求的反比例函数为
依题意得: 6 =
k
2
,
y ,
k
x
∴k=12.··································································································(2 分)
12 .··········································································· (4 分)
∴反比例函数为
y
x
(2) 设 P(x,y)是线段 AB上任一点,则有 2≤x≤3,4≤y≤6.···················· (6 分)
∵m =
y
x
, ∴
4
3
≤m≤
6
2
.
4
3
所以 m的取值范围是
≤m≤3.···································································(8 分)
23. (本小题满分 8 分)
10
解: (1) 甲x =
1.10
7.9
乙x =
(2)∵ 2
甲s =
1
10
(8.8-9.8)2
8.82.10
8.96.91.10
10
6.96.99.89.9
10
10
8.94.10
2.91.10
=9.8. · (2 分)
3.10
7.92.10
=9.8 . ·············(4 分)
[(10-9.8)2+(10.1-9.8)2+(9.6-9.8)2+(9.8-9.8)2+(10.2-9.8)2+
+(10.4-9.8)2+(9.8-9.8)2+(10.1-9.8)2+(9.2-9.8)2]=0.214. ··············· (6 分)
2
乙s =
1
10
[(9.7-9.8)2+(10.1-9.8)2+(10-9.8)2+(9.9-9.8)2+(8.9-9.8)2+(9.6-9.8)
2+(9.6-9.8)2
+(10.3-9.8)2+(10.2-9.8)2+(9.7-9.8)2]=0.146.
∴ 2
甲s > 2
乙s ,∴乙运动员的发挥比较稳定.······················································ (8 分)
24. (本小题满分 10 分)
证明:(1)连接 DE,∵∠ABC=90°∴∠ABE=90°,
∴AE是⊙O直径.·························································· (1 分)
∴∠ADE=90°,∴DE⊥AC.············································· (2 分)
又∵D是 AC的中点,∴DE是 AC的垂直平分线.
∴AE=CE.····································································· (3 分)
(2)在△ADE和△EFA中,
∵∠ADE=∠AEF=90°,∠DAE=∠FAE,
∴△ADE∽△EFA.·························································· (4 分)
∴
∴
AE
AF
AE
6
AD
AE
2
AE
,
.
··························································(5 分)
∴AE=2 3 cm. ························································································ (6 分)
(3) ∵AE是⊙O直径,EF是⊙O的切线,∴∠ADE=∠AEF=90°,
AD
ED
DE
DF
∴Rt△ADE∽Rt△EDF.
∴
.················································ (7 分)
∵
CF ,AD=CD,∴CF=nCD,∴DF=(1+n)CD, ∴DE=
CD
n
n1
CD.·················(8 分)
在 Rt△CDE中,CE2 =CD2 +DE2 =CD2 +(
n1
CD) 2 =(n+2)CD2 .
∴CE=
2n
CD. ···················································································· (9 分)
∵∠CAB=∠DEC,∴sin∠CAB=sin∠DEC =
CD
CE
=
1
n
=
2
2
n
2
n
.··················· (10 分)
25.(本小题满分 10 分)
解:(1)由 5
x
2
=0,········································································· (1 分)
得
1 x
0
,
x
2
12
x
12
5
.············································································· (2 分)
12 ,0).·······································(3 分)
∴抛物线与 x轴的交点坐标为(0,0)、(
5
(2)当 a=1 时,得 A(1,17)、B(2,44)、C(3,81),································· (4 分)
分别过点 A、B、C作 x轴的垂线,垂足分别为 D、E、F,则有
S
ABC
=S
梯形
ADFC
17(
=
-
S 梯形
ADEB
-
S 梯形
BEFC
·················································· (5 分)
2)81
2
17(
-
1)44
2
44(
-
1)81
2
···································· (6 分)
=5(个单位面积)····································································· (7 分)
(3)如:
y
3
(3
y
2
y
1
)
. ····································································· (8 分)
事实上,
y
3
)3(5
a
2
12
)3(
a
=45a2+36a.
3(
y )=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.············· (9 分)
2
y
1
∴
y
3
(3
y
2
y
1
)
.