2020 年青海海北中考数学试题及答案
一、填空题(本大题共 12 小题 15 空,每空 2 分,共 30 分)
1.(-3+8)的相反数是________; 16 的平方根是________.
2.分解因式:
2
ax
2
2
ay
2
________;不等式组
4 0
2
3 0
x
x
的整数解为________.
3.岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结
一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为 125
纳米;125 纳米用科学记数法表示为________米(1 纳米
910
米)
4.如图 1,将周长为 8 的 ABC△
沿 BC边向右平移 2 个单位,得到 DEF△
,则四边形 ABFD 的周长为________.
5.如图 2, ABC△
中,
AB AC
14cm
, AB 的垂直平分线 MN 交 AC 于点 D ,且 DBC△
的周长是 24cm,
则 BC ________cm.
6.如图 3,在矩形 ABCD 中,对角线 AC , BD 相交于点 O ,已知
BOC
120
,
DC
3cm
,则 AC 的长为
________cm.
7.已知 a,b,c为 ABC△
的三边长.b,c满足
(
b
2
2)
,且 a为方程|
3
0
c
x 的解,则 ABC△
4 | 2
的
形状为________三角形.
8.在解一元二次方程 2
x
bx
时,小明看错了一次项系数 b ,得到的解为 1
x , 2
c
2
0
x ;小刚看错了
3
常数项 c ,得到的解为 1 1
x , 2
x .请你写出正确的一元二次方程_________.
4
9.已知 O 的直径为 10cm,AB,CD 是 O 的两条弦, / /
AB CD ,
AB
8cm
,
CD
6cm
,则 AB 与 CD 之间
的距离为________cm.
10.如图 4,在 ABC△
中,
C
90
,
AC ,
3
BC ,则 ABC△
4
的内切圆半径 r ________.
11.对于任意两个不相等的数 a ,b 定义一种新运算“㊉”如下:
a
b
a b
a b
,如:
3
2
3 2
3 2
5
,
那么12
4 ________.
12.观察下列各式的规律:
①
1 3 2
2
;②
3 4
1
2
2 4 3
;③
8 9
1
3 5 4
2
15 16
1
.
请按以上规律写出第 4 个算式________.
用含有字母的式子表示第 n个算式为________.
二、单项选择题(本大题共 8 小题,每小题 3 分,共 24 分)
13.下面是某同学在一次测试中的计算:
① 2
3
m n mn
5
2
②
mn
2
2
3
a b
2
2
a b
4
6
a b
③
23
a
a ④
5
a
3
(
a
)
其中运算正确的个数为()
2
a
A.4 个
B.3 个
C.2 个
D.1 个
14.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是()
A.55°,55°
C.70°,40°
B.70°,40°或 70°,55°
D.55°,55°或 70°,40°
15.如图 5,根据图中的信息,可得正确的方程是()
A.
B.
2
8
2
2
8
2
x
x
2
6
2
2
6
2
(
x
5)
(
x
5)
C.
2
8
x
2
6
(
x
5)
D.
2
x
8
2
6
5
16.剪纸是我国传统的民间艺术将一张纸片按图 6 中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁
剪,最后将图④中的纸片打开铺平,所得图案应该是()
A.
B.
C.
D.
17.在一张桌子上摆放着一些碟子,从 3 个方向看到的 3 种视图如图 7 所示,则这个桌子上的碟共有()
A.4 个
B.8 个
18.若
ab ,则正比例函数 y
0
C.12 个
ax 与反比例函数 b
x
y
D.17 个
在同一平面直角坐标系中的大致图像可能是()
A.
B.
C.
D.
19.如图 8 是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是
()
A.3.6
B.1.8
С.3
D.6
20.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速
注水,如图 9 所示,则小水杯水面的高度 h(cm)与注水时间 t(min)的函数图像大致为下图中的()
A.
B.
C.
D.
三、(本大题共 3 小题,第 21 题 5 分,第 22 题 5 分,第 23 题 8 分,共 18 分).
21. 计算:
1
3
1
1
3 tan 45
(
3.14)
0
3
27
22.化简求值:
a
1
a
a
a
2
1
2
2
a
2
2
a
a
a
1
;其中 2
a
a .
1 0
23.如图 10,在 Rt ABC△
中,
C
90
.
(1)尺规作图:作 Rt ABC△
的外接圆 O ;作 ACB
的角平分线交 O 于点 D,连接 AD.(不写作法,保
留作图痕迹)
(2)若 AC =6,BC =8,求 AD的长.
四、(本大题共 3 小题,第 24 题 9 分,第 25 题 8 分,第 26 题 9 分,共 26 分).
24.某市为了加快 5G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图 11 所示.小军为了知道发射
塔的高度,从地面上的一点 A测得发射塔顶端 P点的仰角是 45°,向前走 60 米到达 B 点测得 P点的仰角是
60°,测得发射塔底部 Q 点的仰角是 30°.请你帮小军计算出信号发射塔 PQ的高度.(结果精确到 0.1 米,
3 1.732
)
25.如图 12,已知 AB 是 O 的直径,直线 BC 与 O 相切于点 B,过点 A 作 AD//OC 交 O 于点 D,连接 CD.
(1)求证:CD 是 O 的切线.
(2)若
AD ,直径
4
AB ,求线段 BC的长.
12
26.每年 6 月 26 日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加
了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优
秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图 13-1、图 13-2 中所给的信息解答下
列问题:
(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.
(2)请将图 13-1 中的条形统计图补充完整.
(3)已知该市共有 15000 名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统
计情况估计该市大约有多少名学生在这次答题中成绩不合格?
(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取 2 名同学参加全市现场禁毒知识
竞赛,请用树状图或列表法求出必有甲同学参加的概率.
五、(本大题共两小题,第 27 题 10 分,第 28 题 12 分,共 22 分)
27.在 ABC△
中, AB AC , CG BA 交 BA的延长线于点 G.
特例感知:
(1)将一等腰直角三角尺按图 14-1 所示的位置摆放,该三角尺的直角顶点为 F,一条直角边与 AC重合,
另一条直角边恰好经过点 B.通过观察、测量 BF与 CG的长度,得到 BF CG
.请给予证明.
猜想论证:
(2)当三角尺沿 AC方向移动到图 14-2 所示的位置时,一条直角边仍与 AC边重合,另一条直角边交 BC于
点 D,过点 D作 DE BA 垂足为 E.此时请你通过观察、测量 DE,DF与 CG的长度,猜想并写出 DE、DF与 CG
之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图 14-2 的基础上沿 AC方向继续移动到图 14-3 所示的位置(点 F在线段 AC上,且点 F与
点 C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)
28.如图 15-1(注:与图 15-2 完全相同)所示,抛物线
y
21
x
2
bx
经过 B、D两点,与 x轴的另一个
c
交点为 A,与 y轴相交于点 C.
(1)求抛物线的解析式.
(2)设抛物线的顶点为 M,求四边形 ABMC的面积(请在图 15-1 中探索)
(3)设点 Q在 y轴上,点 P在抛物线上.要使以点 A、B、P、Q为顶点的四边形是平行四边形,求所有满足
条件的点 P的坐标(请在图 15-2 中探索)
暂无参考答案----待更新……