GEATbx com 
Genetic and Evolutionary Algorithm Toolbox for Matlab 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GEATbx Examples 
Examples of  
Objective Functions 
by: 
Hartmut Pohlheim 
GEATbx version 3.8 
(December 2006) 
www.geatbx.com 
support@geatbx.com 
Contents 
1  Introduction ..................................................................................................... 1 
1.1  Examples of Parametric Optimization............................................................................ 1 
1.2  Examples of Multi-objective Optimization.................................................................... 1 
2  Parametric Optimization................................................................................ 3 
2.1  De Jong's function 1 ....................................................................................................... 3 
2.2  Axis parallel hyper-ellipsoid function............................................................................ 3 
2.3  Rotated hyper-ellipsoid function .................................................................................... 4 
2.4  Moved axis parallel hyper-ellipsoid function................................................................. 5 
2.5  Rosenbrock's valley (De Jong's function 2) ................................................................... 5 
2.6  Rastrigin's function 6...................................................................................................... 6 
2.7  Schwefel's function 7...................................................................................................... 7 
2.8  Griewangk's function 8................................................................................................... 7 
2.9  Sum of different power function 9 ................................................................................. 8 
2.10  Ackley's Path function 10............................................................................................. 9 
2.11  Langermann's function 11 .......................................................................................... 10 
2.12  Michalewicz's function 12.......................................................................................... 10 
2.13  Branins's rcos function ............................................................................................... 11 
2.14  Easom's function......................................................................................................... 12 
2.15  Goldstein-Price's function .......................................................................................... 12 
2.16  Six-hump camel back function................................................................................... 13 
3  Multi-objective Optimization....................................................................... 15 
3.1  Fonseca's function 1 and 2............................................................................................ 15 
Index ................................................................................................................... 17 
 
www.geatbx.com 
 
GEATbx Examples 
1  Introduction 
This document describes a number of test functions implemented for use with the Genetic and Evolutionary Al-
gorithm  Toolbox  for  Matlab  (GEATbx).  These  functions are  drawn  from  the  literature  on  evolutionary algo-
rithms  and  global  optimization.  The  first  Section  describes  a  set  of  common  parametric  test  problems imple-
mented as Matlab m-files. The second Section presents a number of dynamic systems, implemented in Simulink, 
as s-files and m-files as appropriate. 
1.1  Examples of Parametric Optimization 
Each of the functions in Chapter 2 is described by the function definition, one or more 3-D graphics to show the 
properties of the function and a description of the features of the function. 
1.2  Examples of Multi-objective Optimization 
The functions in Chapter 3 constitute multi-objective example functions. For each of them the definition and a 
description of the features of the function are given. Plots of the PARETO-front in search and solution space 
enhance the understanding of the functions. If useful, 3-D graphics showing the search space are provided. 
 
All of the test function implementations are scaleable, i.e. the functions can be called with as many dimensions 
as necessary and the default dimension of the test functions is adjustable via a single parameter value inside the 
function. 
 
For writing own objective functions see Writing objective functions. 
www.geatbx.com 
 
GEATbx Examples 
2  Parametric Optimization 
 
2.1  De Jong's function 1 
The simplest test function is De Jong's function 1. It is also known as sphere model. It is continuos, convex and 
unimodal. 
function definition: 
( )
xf
1
n
= ∑
x
i
x
2
i
≤
12.5
−
12.5
≤
i
 
1
=
    
  f1(x)=sum(x(i)^2), i=1:n, -5.12<=x(i)<=5.12. 
global minimum: 
  f(x)=0, x(i)=0, i=1:n. 
This function is implemented in objfun1. 
Fig. 2-1: 
Visualization of De Jong's function 1 using different domains of the variables; however, both 
graphics look similar, just the scaling changed; left: surf plot of the function in a very large 
area from -500 to 500 for each of both variables, right: the function at a smaller area from -10 
to 10 
 
 
2.2  Axis parallel hyper-ellipsoid function 
The  axis  parallel  hyper-ellipsoid  is  similar  to  De  Jong's  function  1.  It  is  also  known  as  the  weighted  sphere 
model. Again, it is continuos, convex and unimodal. 
function definition: 
( )
x
n
= ∑
f
a1
xi
2
⋅
i
−
12.5
≤
    
  f1a(x)=sum(i·x(i)^2), i=1:n, -5.12<=x(i)<=5.12. 
global minimum: 
1
=
 
i
≤
12.5
x
i
www.geatbx.com 
 
GEATbx Examples 
4 
2  Parametric Optimization 
  f(x)=0; x(i)= 0, i=1:n. 
This function is implemented in objfun1a. 
Fig. 2-2: 
Visualization of Axis parallel hyper-ellipsoid function; surf/mesh plot of the function in an 
area from -5 to 5 
 
2.3  Rotated hyper-ellipsoid function 
An extension of the axis parallel hyper-ellipsoid is Schwefel's function1.2. With respect to the coordinate axes, 
this function produces rotated hyper-ellipsoids. It is continuos, convex and unimodal. 
function definition: 
    
f
b1
( )
x
= ∑ ∑
x
j
i
1
=
j
1
=
2
−
536.65
≤
x
i
≤
536.65
 
n
i
⎛
⎜⎜
⎝
⎞
⎟⎟
⎠
  f1b(x)=sum(sum(x(j)^2), j=1:i), i=1:n, -65.536<=x(i)<=65.536. 
global minimum: 
  f(x)=0; x(i)=0, i=1:n. 
This function is implemented in objfun1b. 
Fig. 2-3: 
Visualization of Rotated hyper-ellipsoid function; surf/mesh plot of the first two variables in 
an area from –50 to 50 
GEATbx Examples 
 
 
www.geatbx.com