logo资料库

Microwave Solid State Circuit Design.pdf

第1页 / 共920页
第2页 / 共920页
第3页 / 共920页
第4页 / 共920页
第5页 / 共920页
第6页 / 共920页
第7页 / 共920页
第8页 / 共920页
资料共920页,剩余部分请下载后查看
Face Cover
Internal Cover
Publishing Informations
Contributors
Contents
Preface
1. Introduction (P. Pramanick & P. Bhartia)
1.1 Characteristics of Microwaves/Millimeter Waves
1.2 History of Microwave Planar Circuits
1.3 Applications of Microwave Planar Circuits
1.4 Microwave Network Theory
1.4.1 Concepts of Equivalent Voltage And Current
1.4.2 Admittance and Impedance Matrices
1.4.3 Scattering Matrix
1.4.4 Transformation of Scattering Matrix Due to Shift In Reference Planes
1.4.5 Chain Matrix(ABCD) Repressentation
References
2. Transmission Lines and Lumped Elements (I. Bahl)
2.1 Transmission Lines
2.1.1 Characteristics of Conventional Transmission Structures
2.1.2 Characteristics of Planar Transmission Lines
2.1.3 Comparison of Various MIC Transmission Media
2.2 Coupled Lines
2.3 Discontinuities
2.4 Lumped Elements
2.4.1 Design of Lumped Elements
2.4.2 Design of Inductors
2.4.3 Design of Capacitors
2.4.4 Design of Resisters
References
Problems
3. Resonators (A. Sharma & A. Khanna)
3.1 Introduction
3.2 Resonator Parameters
3.2.1 Resonant Frequency
3.2.2 Quality Factor
3.2.3 Fractional Bandwidth
3.2.4 Loaded Quality Factor
3.2.5 Damping Factor
3.2.6 Coupling
3.3 Cavity Resonators
3.3.1 Coaxial Resonators
3.3.2 Reentrant Coxaial Resonators
3.3.3 Rectangular Waveguide Resonators
3.3.4 Circular Waveguide Resonators
3.3.5 Elliptic Waveguide Resonators
3.4 Planar Microstrip Resonant Structures
3.4.1 Rectangular Microstrip Resonators
3.4.2 Circular Microstrip Disk Resonators
3.4.3 Circular Microstrip Ring Resonators
3.4.4 Triangular Microstrip Resonators
3.4.5 High-Q Resonators
3.4.6 Tunable Resonators
3.5 Dielectric Resonators
3.5.1 Material
3.5.2 Resonant Frequency
3.5.3 Coupling of Dielectric Resonator in MIC Configuration
3.5.4 Spurious Modes
3.5.5 Frequency Tuning
3.6 YIG Resonators
3.6.1 Resonant Frequency and Quality Factor
3.6.2 Coupling and Equivalent Circuit
3.6.3 Magnetic Circuit
3.7 Resonator Measurements
3.7.1 Single-Port Resonator
3.7.2 Two-Port Resonator
References
Problems
4. Impedance Transformation Techniques (P. Shastry)
4.1 Introduction
4.2 Narrow-band transformation Techniques
4.2.1 Distribute-Element Techniques
4.2.2 Lumped-Element Techniques
4.2.3 Combined Lumped- and Distributed-Element Techniques
4.2.4 T- and Pi-Network Techniques
4.3 Wide-band Tranformation Techniques
4.3.1 Bode-Fano Criterion
4.3.2 Multisection Quarter-Wave Transformers
4.3.3 Tapered Transmission-Line Transformers
4.3.4 Lumped- and Distributed-Element Matching Networks
4.3.5 Image Impendance Terminations
References
Further Reading
Problems
5. Hybrids and Couplers (P. Bhartia & P. Pramanick)
5.1 Introduction
5.1.1 Basics of Hybrids and Couplers
5.1.2 Types of Hybrids and Couplers
5.1.3 Applications
5.2 Design of Hybrids
5.2.1 90deg Hybrids
5.2.2 Ring Form of Branch-Line Hybrid
5.2.3 Matched Hybrid T(Rat-Race Hybrid)
5.2.4 Reduced-Size Quasi-Lumped Quadrate Hybrid [12]
5.2.5 Modified Rat Race
5.3 Coupled-Line Directional Couplers
5.3.1 Directional Couplers Using Aperture-Coupled Lines
5.3.2 TEM Line Directional Couplers
5.3.3 Multiconductor Couplers
5.3.4 Distributed-Type Couplers
5.3.5 Wilkinson Couplers, Power Dividers, and Combiners
5.3.6 Other Couplers
5.4 Design Considerations
5.4.1 Losses in Hybrids
5.4.2 Directively Improvement
References
Problems
6. Filters (E. Griffin & I. Bahl)
6.1 Introduction
6.1.1 Filter Parameter Defination
6.1.2 Basic Types
6.1.3 Applications
6.2 Filter Measurements
6.2.1 Insertion Loss and Return Loss
6.2.2 S Parameters
6.3 Filter Synthesis
6.3.1 Filter Design from Low-Pass Filter Synthesis
6.3.2 Special Response Filter Synthesis
6.3.3 Filter Transformations
6.3.4 Impedance and Admittance Inverters
6.4 Experimental Method of Design Filters
6.5 Filter Modeling
6.5.1 Narrow-band Approximation
6.5.2 Filter Analysis
6.5.3 Numerical Techniques
6.6 Electromagnetic Simulation
6.6.1 Electromagnetic Simulation Methods
6.6.2 Filter Example
6.7 Filter Realizeations
6.7.1 Printed-Circuit Filters
6.7.2 Dielectric Resonator Filters
6.7.3 Ceramic Block Filters
6.7.4 Compact Filters
6.7.5 Lumped-Element Filters
6.8 Practial Considerations
6.8.1 Size, Weight, and Cost
6.8.2 Finite Q
6.8.3 Power-Handing Capability
6.8.4 Temperature Effects
6.8.5 Group Delay
6.8.6 Mechanical Tuning of Filters
6.9 Electrically Tuned Filters
References
Problems
7. Active Devices (R. Trew)
7.1 Introduction
7.2 Basic Semiconductor Device Equations
7.3 Material Parameters
7.4 Bipolar Transistors
7.4.1 Basic Transistor Operation
7.4.2 Current Gain
7.4.3 Limitations and Second-Order Effects
7.4.4 Microwave Transistor
7.4.5 Equivalent Circuit
7.4.6 Noise Figure Analysis
7.4.7 Heterojunction Bipolar Transistors
7.5 Field-Effect Transistors
7.5.1 Basic Operation Principles
7.5.2 MOSFET Model
7.5.3 Small-Signal Model
7.5.4 Equivalent Circuit and Figure of Merit
7.5.5 Noise Figure Analysis
7.5.6 Arbitrary Doping Profile Model and Deep Levels
7.5.7 Power Field-Effect Transistors
7.6 HEMTS
7.6.1 HEMT Model
7.6.2 Noise Performance
7.7 Comparison of Bipolar Transistor and FET Noise Figures
References
Problems
8. Passive Devices (R. Trew)
8.1 Introduction
8.2 PN Junctions
8.2.1 Ideal Diode Equation
8.2.2 Deviations from Ideal Diode Equation
8.2.3 Junction Capacitance
8.3 Schottky Barrier juntions
8.3.1 Surface Effects
8.3.2 Image Force Lowering
8.3.3 Schottky Model
8.3.4 Junction Capacitance
8.3.5 Rectifying Contact Materials
8.3.6 Series Resistance
8.3.7 Equivalent Circuit
8.3.8 Figure of Merit
8.4 Varactor Diodes
8.4.1 Equivalent Circuit
8.4.2 Figure of Merit
8.5 Varistors
8.6 PIN Diodes
8.6.1 Basic Device Physics
8.6.2 Switching Speed
8.6.3 Equivalent Circuit
8.6.4 Figure of Merit
8.7 Step Recovery Diodes
8.7.1 Basic Device Physics
8.7.2 Frequency Limits
8.7.3 Equivalent Circuit
References
Problems
9. Oscillators (A. Khanna)
9.1 Introduction
9.2 Active Devices for Microwave Oscillations
9.3 Concept of Negative Resistance
9.4 Three-Port S-Parameter Characterization of Transistors
9.5 Oscillation and Stablity Conditions
9.6 Transistor Oscillator Types and Configuration
9.7 Fixed-Frequency Oscillators
9.7.1 Resonator as Series Feedback Element
9.7.2 Resonator as Parallel Feed Element
9.7.3 Series versus Parallel Feedback
9.7.4 Maxium Oscillator Power Output
9.7.5 Temperature Stability of DROs
9.7.6 Tunable DROs
9.7.7 Transmission Resonator Oscillators
9.8 Wide-Band Tunable Oscillators
9.8.1 YIG-Tuned Oscillators
9.8.2 Voltage-Controlled Oscillators
9.9 Oscillator Characterization and Measurements
9.9.1 Modulation Bandwidth
9.9.2 Frequency and Power Pulling
9.9.3 Phase Noise and Jitter
References
Problems
10. Amplifiers (I. Bahl & E. Griffin)
10.1 Introduction
10.2 Amplifier Characterization
10.2.1 Power Gain
10.2.2 Noise Characterization
10.2.3 Stability
10.2.4 Nonlinear Behavior
10.2.5 Dynamic Range
10.3 Biasing Networks
10.4 Small-signal Amplifier Design
10.4.1 FET Selection
10.4.2 Narrow-Band Low-Noise Design
10.4.3 Maxium-Gain Amplifier Desgin
10.4.4 Broadband Amplifiers
10.5 Power Amplifiers
10.5.1 Device Models: Linear and Nonlinear
10.5.2 Load-Line Modelling
10.5.3 Power Amplifier Design
10.5.4 Design of Internal Matched Power FET Amplifier
10.5.5 Power-Combing Techniques
References
Problems
11. Detectors and Mixers (R. Harrison)
11.1 Introduction
11.1.1 Basics of Detcetion and Mixing
11.1.2 Applications of Detectors and Mixers
11.1.3 Nonlinear Resistive Device for Detection and Mixing
11.1.4 Noise in Detector and Mixer Devices
11.2 Detectors
11.2.1 Principle of Operation
11.2.2 Detectoe Sensitivity Measures
11.2.3 Small-Signal Detector Theroy
11.2.4 Large-Signal Detector Theory
11.2.5 Detector Design Considerations
11.3 Mixers
11.3.1 Mixer Spectral Products
11.3.2 Image-Enhanced Mixers
11.3.3 Conversion Loss and Conversion Gain
11.3.4 Ideal Mixers
11.3.5 Exponential-Diode Mixers
11.3.6 Mixer Performance Measures
11.3.7 Types of Mixer Circuits
11.3.8 Mixer Noise
References
Problems
12. Microwave Control Circuits (K. Gupta)
12.1 PIN Diode and MOSFET Modeling for Control Circuits
12.1.1 PIN Diodes
12.1.2 GaAs MOSFETs
12.2 Design of Switches
12.2.1 Basic Configurations
12.2.2 Insertion Loss and Isolation
12.2.3 Compensation of Device Reactances
12.2.4 Single-Pole Double-Throw(SPDT) Switches
12.2.5 Series-Shunt Switching Configurations
12.2.6 Switching Speed Considerations
12.3 Design of Phase Shifters
12.3.1 General
12.3.2 Switched-Line Phase Shifters
12.3.3 Loaded-Line Phase Shifters
12.3.4 Reflection-Type Phase Shifters
12.3.5 Switched-Network Phase Shifters
12.3.6 Amplifier-Type Phase Shifters
12.4 Design of Limited Circuits
12.4.1 Various Phenomena Used for Limiting
12.4.2 PIN Diode Limiters
12.4.3 Limiters in Microstrip Configuration
12.5 Design of Variable Attenuators
12.5.1 PIN Diode Attenuators
12.5.2 MOSFET Attenuators
References
Problems
13. Frequency Mutipliers and Dividers (R. Harrison)
13.1 Introduction
13.1.1 Basics of Frequency Multiplication and Division
13.1.2 Applications
13.2 Frequency Multiplication
13.2.1 Types of Multipliers
13.2.2 Nonlinear-Resistance Multipliers
13.2.3 Nonlinear-Reactance Multipliers
13.2.4 Active Frequency Multipliers
13.3 Frequency Division
13.3.1 Types of Frequency Dividers
13.3.2 Parameteric Frequency Dividers
13.3.3 Regenerative(Mixer-with-Feedback) Frequency Dividers
13.3.4 Injection-Locked Frequency Dividers
References
Problems
14. RF MEMS Devices and Circuit Applications(R. Ramadoss & K. Gupta)
14.1 Introduction
14.2 RF MEMS Fabrication and Assembly
14.2.1 Fabrication Processes
14.2.2 Assembly and Packaging Techniques
14.3 RF MEMS Actuators
14.3.1 Actuator Structures
14.3.2 Electorstatic Actuators
14.4 RF MEMS Devices
14.4.1 Switches
14.4.2 Varactos
14.5 RF MEMS Applications
14.5.1 Phase Shifters
14.5.2 Filters
14.5.3 Impedance Tuners
14.5.5 Amplifiers
14.5.6 MEMS Mechanical Resonators and Filters
14.5.7 Micromachined Components and Circuits
Appendix: Prameters of Symmetrical T-Network
References
Problems
15. Circuit Fabication Technologies (I. Bahi)
15.1 Introduction
15.1.1 Materials
15.1.2 Mask Layouts
15.1.3 Mask Fabrication
15.2 Printed-Circuit Boards[12, 13]
15.2.1 PCB Fabrication
15.2.2 Example of a PCB
15.3 Microwave Printed Circuits
15.3.1 MPC Fabrication
15.3.2 MPC Examples
15.4 Hybrid Integrated Circuits
15.4.1 Thin-Film MICs
15.4.2 Thick-Film Technology
15.4.3 Cofired Ceramic and Glass-Ceramic Technology
15.5 Monolithic Integrated Circuits
15.5.1 MMIC Fabrication
15.5.2 MMIC Example
15.6 Technology Comparison and Choices
References
Appendix A. Units and Symbols
A.1 SI Units and their Symbols
A.2 Metric Prefixes
A.3 Decibel Units
Appendix B. Physical Constants and Other Data
Appendix C. ABCD and S-Parameters
C.1 ABCD Parameters
C.2 S-Parameters
Appendix D. Tranfer Function Responses
D.1 Butterworth Response
D.2 Chebyshev Response
Index
Back Cover
分享到:
收藏