logo资料库

ELM 学习资料(详细).pdf

第1页 / 共55页
第2页 / 共55页
第3页 / 共55页
第4页 / 共55页
第5页 / 共55页
第6页 / 共55页
第7页 / 共55页
第8页 / 共55页
资料共55页,剩余部分请下载后查看
Outline
Main Talk
Neural Networks
Single-Hidden Layer Feedforward Networks (SLFNs)
Conventional Learning Algorithms of SLFNs
Extreme Learning Machine
Unified Learning Platform
ELM Algorithm
ELM for Multi-Categories Classification Problems
Performance Evaluations
Summary
Outline Extreme Learning Machine for Multi- Categories Classification Applications Hai-Jun Rong1,2, Guang-Bin Huang1 and Yew-Soon Ong2 1School of Electrical and Electronic Engineering 2School of Computer Engineering Nanyang Technological University Nanyang Avenue, Singapore 639798 E-mail: {hjrong, egbhuang, asysong}@ntu.edu.sg tu-logo IEEE World Congress on Computational Intelligence ur-logo Hong Kong, June 1-6 2008 ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Outline Outline 1 Neural Networks Single-Hidden Layer Feedforward Networks (SLFNs) Conventional Learning Algorithms of SLFNs 2 Extreme Learning Machine Unified Learning Platform ELM Algorithm 3 ELM for Multi-Categories Classification Problems 4 Performance Evaluations 5 Summary tu-logo ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Outline Outline 1 Neural Networks Single-Hidden Layer Feedforward Networks (SLFNs) Conventional Learning Algorithms of SLFNs 2 Extreme Learning Machine Unified Learning Platform ELM Algorithm 3 ELM for Multi-Categories Classification Problems 4 Performance Evaluations 5 Summary tu-logo ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Outline Outline 1 Neural Networks Single-Hidden Layer Feedforward Networks (SLFNs) Conventional Learning Algorithms of SLFNs 2 Extreme Learning Machine Unified Learning Platform ELM Algorithm 3 ELM for Multi-Categories Classification Problems 4 Performance Evaluations 5 Summary tu-logo ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Outline Outline 1 Neural Networks Single-Hidden Layer Feedforward Networks (SLFNs) Conventional Learning Algorithms of SLFNs 2 Extreme Learning Machine Unified Learning Platform ELM Algorithm 3 ELM for Multi-Categories Classification Problems 4 Performance Evaluations 5 Summary tu-logo ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Outline Outline 1 Neural Networks Single-Hidden Layer Feedforward Networks (SLFNs) Conventional Learning Algorithms of SLFNs 2 Extreme Learning Machine Unified Learning Platform ELM Algorithm 3 ELM for Multi-Categories Classification Problems 4 Performance Evaluations 5 Summary tu-logo ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Neural Networks ELM ELM for Multi-Categories Classification Problems Performance Evaluations Summary SLFN Models Learning Methods Outline 1 Neural Networks Single-Hidden Layer Feedforward Networks (SLFNs) Conventional Learning Algorithms of SLFNs 2 Extreme Learning Machine Unified Learning Platform ELM Algorithm 3 ELM for Multi-Categories Classification Problems 4 Performance Evaluations 5 Summary tu-logo ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
Neural Networks ELM ELM for Multi-Categories Classification Problems Performance Evaluations Summary SLFN Models Learning Methods Feedforward Neural Networks with Additive Nodes Output of hidden nodes G(ai , bi , x) = g(ai · x + bi ) (1) ai : the weight vector connecting the ith hidden node and the input nodes. bi : the threshold of the ith hidden node. Output of SLFNs fL(x) = LX i=1 βi G(ai , bi , x) (2) tu-logo Figure 1: Feedforward Network Architecture: additive hidden nodes βi : the weight vector connecting the ith hidden node and the output nodes. ur-logo ELM Web Portal: www.ntu.edu.sg/home/egbhuang Extreme Learning Machines
分享到:
收藏