logo资料库

随机微分方程习题解答.pdf

第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
资料共33页,剩余部分请下载后查看
Stochastic Differential Equations, Sixth Edition Solution of Exercise Problems Yan Zeng July 16, 2006 This is a solution manual for the SDE book by Øksendal, Stochastic Differential Equations, Sixth Edition. It is complementary to the books own solution, and can be downloaded at www.math.fsu.edu/˜zeng. If you have any comments or find any typos/errors, please email me at yz44@cornell.edu. This version omits the problems from the chapters on applications, namely, Chapter 6, 10, 11 and 12. I hope I will find time at some point to work out these problems. ∞ k=0 ∞ k=0 1 k! (− t 2 )ku2k. ik k! E[Bk t ]uk = E[eiuBt] = E[B2k t ] = 1 k!(− t 2)k (−1)k (2k)! = (2k)! k! · 2k tk. Ex[|Bt − Bs|4] = Ex[(B(i) t − B(i) s )2(B(j) t − B(j) s )2] · (t − s)2 + n(n − 1)(t − s)2 s )4] + i=j t − B(i) Ex[(B(i) n = n · 4! 2! · 4 = n(n + 2)(t − s)2. i=1 2.8. b) Proof. So d) Proof. 2.11. Proof. Prove that the increments are independent and stationary, with Gaussian distribution. Note for Gaussian random variables, uncorrelatedness=independence. 2.15. Proof. Since Bt − Bs ⊥ Fs := σ(Bu : u ≤ s), U(Bt − Bs) ⊥ Fs. Note U(Bt − Bs) d= N(0, t − s). 3.2. 1
Proof. WLOG, we assume t = 1, then (B3 j/n − B3 (j−1)/n) B3 1 = = = j=1 n n n n j=1 j=1 + j=1 := I + II + III n [(Bj/n − B(j−1)/n)3 + 3B(j−1)/nBj/n(Bj/n − B(j−1)/n)] (Bj/n − B(j−1)/n)3 + 3B2 (j−1)/n(Bj/n − B(j−1)/n) j=1 3B(j−1)/n(Bj/n − B(j−1)/n)2 By Problem EP1-1 and the continuity of Brownian motion. I ≤ [ To argue II → 3 1 n 0 B2 j=1 B2 (j−1)/n1{(j−1)/n
By looking at a subsequence, we only need to prove the L2-convergence. Indeed, 2 E E j=1  n n n n n j=1 j=1 j=1 j=1 = = = = B(j−1)/n[(Bj/n − B(j−1)/n)2 − 1 n ] (j−1)/n[(Bj/n − B(j−1)/n)2 − 1 B2 (Bj/n − B(j−1)/n)4 − 2 E n ]2 j − 1 n j − 1 1 n2 − 2 n 2(j − 1) n3 → 0 (3 1 n2 + 1 n2 ) (Bj/n − B(j−1)/n)2 + n 1 n2 (Btj+1 − Btj ) (Btj+1 − B tj +tj+1 2 ) + Btj (B tj +tj+1 2 − Btj ) + j (B tj +tj+1 2 − Btj )2. 0 BtdBt. For the second term, we note as n → ∞. This completes our proof. 3.9. 2 2 j j B tj +tj+1 B tj +tj+1 The first term converges in L2(P ) to T Proof. We first note that =     = = tj+1 − tj = B tj +tj+1 B tj +tj+1 B tj +tj+1 = E tj+1−tj 2 · B2 j, k E E E j j j 2 2 2 2 2 − Btj − Btj 2 2 2 − t 2 − 2 − tj+1 − tj 2 2 j tj+1 − tj 2 2 − Btj − tj+1 − tj 2 2 2 − tk+1 − tk 2 − Btk B tk+tk+1 2 since E[(B2 j ≤ T 2 max 1≤j≤n t − t)2] = E[B4 |tj+1 − tj| → 0, t − 2tB2 t + t2] = 3E[B2 (Btj+1 − Btj ) → T t ]2 − 2t2 + t2 = 2t2. So 1 2 B2 BtdBt + T 2 = T 0 B tj +tj+1 2 j in L2(P ). 3
Proof. According to the result of Exercise 3.9., it suffices to show f(t j, ω)∆Bj  → 0.  f(t j, ω)∆Bj 3.10. Indeed, note 3.11. E f(tj, ω)∆Bj − j j)||∆Bj|]  j j f(tj, ω)∆Bj −  ≤ ≤ ≤ E[|f(tj) − f(t E[|f(tj) − f(t K|tj − t √ E j j j j j √ K √ |tj − t j| 1+ j|1+  |tj − t j|  2 2 K max 1≤j≤n = ≤ T → 0. j)|2]E[|∆Bj|2] 2 |tj − t j| 1 2 Proof. Assume W is continuous, then by bounded convergence theorem, lims→t E[(W (N ) Since Ws and Wt are independent and identically distributed, so are W (N ) and W (N ) s t E[(W (N ) t − W (N ) s )2] = E[(W (N ) t )2] − 2E[W (N ) t ]E[W (N ) s ] + E[(W (N ) s )2] = 2E[(W (N ) t )2] = 0. s t − W (N ) . Hence )2] − 2E[W (N ) t ]2. Since the RHS=2V ar(W (N ) N → ∞ and apply dominated convergence theorem to E[W (N ) 3.18. t t ) is independent of s, we must have RHS=0, i.e. W (N ) = E[W (N ) ], we get Wt = 0. Therefore W· ≡ 0. t t ] a.s. Let Proof. If t > s, then Mt Ms E |Fs = E eσ(Bt−Bs)− 1 2 σ2(t−s)|Fs = E[eσBt−s] 2 σ2(t−s) 1 = 1 e The second equality is due to the fact Bt − Bs is independent of Fs. 4.4. Proof. For part a), set g(t, x) = ex and use Theorem 4.12. For part b), it comes from the fundamental property of Itˆo integral, i.e. Itˆo integral preserves martingale property for integrands in V. Comments: The power of Itˆo formula is that it gives martingales, which vanish under expectation. 4.5. 4
Proof. Therefore, t 0 Bk t = kBk−1 s dBs + t 0 Bk−2 s ds 1 2 k(k − 1) t βk(t) = k(k − 1) 2 0 βk−2(s)ds This gives E[B4 t ] and E[B6 t ]. For part b), prove by induction. 4.6. (b) Proof. Apply Theorem 4.12 with g(t, x) = ex and Xt = ct +n j=1 αjBj. Noten j=1 αjBj is a BM, up to a constant coefficient. 4.7. (a) Proof. v ≡ In×n. (b) Proof. Use integration by parts formula (Exercise 4.3.), we have 0 + 2 t So Mt = X 2 t t X 2 t = X 2 0 + 2 XsdX + 0 0 |vs|2ds = X 2 0 + 2 t t 0 E 0 XsvsdBs. Let C be a bound for |v|, then t ≤ C 2E |Xs|2ds = C 2 |Xsvs|2ds s = C 2 E 0 0 |vu|2du 0 ds ≤ C 4t2 2 . t 0 t 0 |vs|2ds. 2 ds vudBu XsvsdBs + t 0 E s 0 So Mt is a martingale. 4.12. Proof. Let Yt = t 0 u(s, ω)ds. Then Y is a continuous {F (n) |Ytk+1 − Ytk|2 ≤ lim ∆tk→0 Y t = lim ∆tk→0 tk≤t t }-martingale with finite variation. On one hand, (total variation of Y on [0, t]) · max |Ytk+1 − Ytk| = 0. tk On the other hand, integration by parts formula yields t 0 t = 2 Y 2 YsdYs + Y t. So Y 2 t is a local martingale. If (Tn)n is a localizing sequence of stopping times, by Fatou’s lemma, t ] ≤ lim So Y· ≡ 0. Take derivative, we conclude u = 0. 4.16. (a) E[Y 2 n E[Y 2 t∧Tn ] = E[Y 2 0 ] = 0. Proof. Use Jensen’s inequality for conditional expectations. (b) 5
(ii) B3 Proof. (i) Y = 2 T T = T 3 t 0 sdBs = t 0 BsdBs. 0 B2 (iii)Mt = E[exp(σBT )|Ft] = E[exp(σBT − 1 0 3B2 0 3(B2 0 BsdBs. So Mt = T + 2 t 0 Bsds = 3 T s dBs + 3 T s + (T − s)dBs. t 2 σ2t). Since Z solves the SDE dZt = ZtσdBt, we have s dBs + 3(BT T − T t 2 σ2T )|Ft] exp( 1 1 Mt = (1 + ZsσdBs) exp( 0 sdBs). So Mt = 3 t 0 B2 s dBs + 3T Bt − 2 σ2T ), where Zt = exp(σBt− 2 σ2T ) = Zt exp( 1 1 2 σ2T ) = exp( 1 2 σ2T ) + 0 σ exp(σBs + 1 2 σ2(T − s))dBs. 0 5.1. (ii) Proof. Set f(t, x) = x/(1 + t), then by Itˆo’s formula, we have (1 + t)2 dt + dBt 1 + t dXt = df(t, Bt) = − Bt = − Xt 1 + t dt + dBt 1 + t (iii) Proof. By Itˆo’s formula, dXt = cos BtdBt − 1 0 : Bs ∈ [− π 2 ]}. Then 2 , π t 0 Xsds. Let τ = inf{s > 0 cos BsdBs − 1 2 0 2 sin Btdt. So Xt = t t∧τ t∧τ t∧τ cos BsdBs − 1 t 2 cos Bs1{s≤τ}dBs − 1 t 2 1 − sin2 Bs1{s≤τ}dBs − 1 t∧τ t∧τ 1 − X 2 2 t s dBs − 1 2 0 0 0 0 0 0 Xsds Xsds t∧τ 0 Xsds. Xsds Xt∧τ = = = = So for t < τ, Xt = t 0 (iv) 1 − X 2 s dBs − 1 2 0 Xsds. Proof. dX 1 t = dt is obvious. Set f(t, x) = etx, then dX 2 t = df(t, Bt) = etBtdt + etdBt = X 2 t dt + etdBt 5.3. Proof. Apply Itˆo’s formula to e−rtXt. 5.5. (a) Proof. d(e−µtXt) = −µe−µtXtdt + e−µtdXt = σe−µtdBt. So Xt = eµtX0 + t 0 σeµ(t−s)dBs. (b) 6
Proof. E[Xt] = eµtE[X0] and So X 2 t = e2µtX 2 0 + σ2e2µt( e−µsdBs)2 + 2σe2µtX0 t 0 e−µsdBs. t 0 t 0 e−2µsds since t E[X 2 t ] = e2µtE[X 2 0 ] + σ2e2µt 0 e−µsdBs is a martingale vanishing at time 0 0 ] + σ2e2µt e−2µt − 1 −2µ 0 ] + σ2 e2µt − 1 t ] − (E[Xt])2 = e2µtV ar[X0] + σ2 e2µt−1 2µ . = e2µtE[X 2 = e2µtE[X 2 2µ . So V ar[Xt] = E[X 2 5.6. Proof. We find the integrating factor Ft by the follows. Suppose Ft satisfies the SDE dFt = θtdt + γtdBt. Then d(FtYt) = FtdYt + YtdFt + dYtdFt = Ft(rdt + αYtdBt) + Yt(θtdt + γtdBt) + αγtYtdt = (rFt + θtYt + αγtYt)dt + (αFtYt + γtYt)dBt. (1) Solve the equation system θt + αγt = 0 αFt + γt = 0, we get γt = −αFt and θt = α2Ft. So dFt = α2Ftdt − αFtdBt. To find Ft, set Zt = e−α2tFt, then dZt = −α2e−α2tFtdt + e−α2tdFt = e−α2t(−α)FtdBt = −αZtdBt. Hence Zt = Z0 exp(−αBt − α2t/2). So Ft = eα2tF0e−αBt− 1 2 α2t = F0e−αBt+ 1 2 α2t. Choose F0 = 1 and plug it back into equation (1), we have d(FtYt) = rFtdt. So Yt = F −1 t (F0Y0 + r Fsds) = Y0eαBt− 1 2 α2t + r eα(Bt−Bs)− 1 2 α2(t−s)ds. t 0 t 0 t 0 esdBs. 5.7. (a) Proof. d(etXt) = et(Xtdt + dXt) = et(mdt + σdBt). So Xt = e−tX0 + m(1 − e−t) + σe−t (b) 7
Proof. E[Xt] = e−tE[X0] + m(1 − e−t) and E[X 2 t ] = E[(e−tX0 + m(1 − e−t))2] + σ2e−2tE[ t 0 e2sds] Hence V ar[Xt] = E[X 2 0 ] + 2m(1 − e−t)e−tE[X0] + m2(1 − e−t)2 + = e−2tE[X 2 t ] − (E[Xt])2 = e−2tV ar[X0] + 1 2 σ2(1 − e−2t). 1 2 σ2(1 − e−2t). 5.9. Proof. Let b(t, x) = log(1 + x2) and σ(t, x) = 1{x>0}x, then |b(t, x)| + |σ(t, x)| ≤ log(1 + x2) + |x| Note log(1 + x2)/|x| is continuous on R − {0}, has limit 0 as x → 0 and x → ∞. So it’s bounded on R. Therefore, there exists a constant C, such that |b(t, x)| + |σ(t, x)| ≤ C(1 + |x|) Also, |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ 2|ξ| 1 + ξ2|x − y| + |1{x>0}x − 1{y>0}y| for some ξ between x and y. So |b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ |x − y| + |x − y| Conditions in Theorem 5.2.1 are satisfied and we have existence and uniqueness of a strong solution. 0 σ(s, Xs)dBs. Since Jensen’s inequality implies (a1 + ··· + an)p ≤ 2 t t t 0 0 0 b(s, Xs)ds + E σ(s, Xs)dBs |b(s, Xs)|2ds] + E[ |σ(s, Xs)|2ds] (1 + |Xs|)2ds] + C 2E[ (1 + |Xs|)2ds]) 2 5.10. Proof. Xt = Z + t np−1(ap 1 + ··· + ap E[|Xt|2] ≤ 3 E[|Z|2] + E 0 b(s, Xs)ds + t t n) (p ≥ 1, a1,··· , an ≥ 0), we have t t t t = 3(E[|Z|2] + 2C 2E[ ≤ 3(E[|Z|2] + C 2E[ E[|Z|2] + E[ ≤ 3 ≤ 3(E[|Z|2] + 4C 2E[ 0 0 0 (1 + |Xs|)2ds]) (1 + |Xs|2)ds]) t 0 0 ≤ 3E[|Z|2] + 12C 2T + 12C 2 E[|Xs|2]ds = K1 + K2 0 E[|Xs|2]ds, t where K1 = 3E[|Z|2] + 12C 2T and K2 = 12C 2. By Gronwall’s inequality, E[|Xt|2] ≤ K1eK2t. 5.11. 0 8
分享到:
收藏