logo资料库

复分析阿尔福斯4-7章练习答案.pdf

第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
资料共33页,剩余部分请下载后查看
Selected Solutions to Complex Analysis by Lars Ahlfors Matt Rosenzweig 1
Contents Chapter 4 - Complex Integration Cauchy’s Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Properties of Analytical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculus of Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.2 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.3 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.3 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.4 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.4 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.4 Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.5 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6.5 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Harmonic Functions Chapter 5 - Series and Product Developments Power Series Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Partial Fractions and Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.5 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.5 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.5 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.5 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.5 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Entire Functions Normal Families 4 4 4 4 5 6 6 6 7 7 7 8 10 10 10 11 12 13 13 13 14 14 14 15 16 16 16 17 18 18 19 19 20 20 21 22 22 23 23 24 24 25 2
Conformal Mapping, Dirichlet’s Problem The Riemann Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elliptic Functions Weierstrass Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.2 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.5 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 27 27 28 28 29 29 30 30 31 31 32 32 3
Chapter 4 - Complex Integration Cauchy’s Integral Formula 4.2.2 Exercise 1 Applying the Cauchy integral formula to f (z) = ez, |z|=1 ez z dz dz ⇐⇒ 2πi = 1 = f (0) = 1 2πi f (z) |z|=1 z Section 4.2.2 Exercise 2 Using partial fractions, we may express the integrand as 1 z2 + 1 = i 2(z + i) − i 2(z − i) Applying the Cauchy integral formula to the constant function f (z) = 1, 1 1 1 2πi 1 dz = i 2 |z|=2 z2 + 1 2πi |z|=2 z + i 2πi |z|=2 1 dz − i 2 1 z − i dz = 0 4.2.3 Exercise 1 1. Applying Cauchy’s differentiation formula to f (z) = ez, 1 = f (n−1)(0) = (n − 1)! 2πi |z|=1 ez zn dz ⇐⇒ 2πi (n − 1)! = |z|=1 ez zn dz 2. We consider the following cases: (a) If n ≥ 0, m ≥ 0, then it is obvious from the analyticity of zn(1 − z)m and Cauchy’s theorem that the integral is 0. (b) If n ≥ 0, m < 0, then by the Cauchy differentiation formula, |z|=2 zn(1−z)mdz = (−1)m 0 (−1)m2πi (|m|−1)! (c) If n < 0, m ≥ 0, then by a completely analogous argument, (z − 1)|m| dz = |z|=2 zn zn(1−z)mdz = (1 − z)m z|n| dz = |z|=2 0 (−1)|n|−12πi (|n|−1)! n ≥ |m| n < |m| − 1 n! (n−|m|+1)! = (−1)|m|2πi n|m|−1 (m−|n|+1)! = (−1)|n|−12πi m|n|−1 m! m < |n| − 1 m ≥ n (d) If n < 0, m < 0, then sincen(|z| = 2, 0) = n(|z| = 2, 1) = 1, we have by the residue formula that |z|=2 |z|=2 (1 − z)mzn = 2πires(f ; 0) + 2πires(f ; 1) = 4 (1 − z)mzndz + (1 − z)mzndz |z|= 1 2 |z−1|= 1 2
Using Cauchy’s differentiation formula, we obtain (1 − z)−|m| z−|n| (1 − z)mzndz = 2 = 2πi dz + |z|=2 z|n| |z|= 1 · (|m| + |n| − 2)! |m| + |n| − 2 (|m| − 1)! 3. If ρ = 0, then it is trivial that 1 |z|=ρ |z − a|−4 |dz| = 0, so assume otherwise. If a = 0, then |m| + |n| − 2 (1 − z)|m| dz · (−1)|m|−1(|n| + |m| − 2)! (−1)|m|2πi (|m| − 1)! (|n| − 1)! (|n| − 1)! |n| − 1 |n| − 1 |z−1|= 1 = 2πi = 0 − + 2 |z|−4 |dz| = ρ−42πiρdt = 2πi ρ3 0 |z|=ρ Now, assume that a = 0. Observe that |z − a|−4 |dz| = |z|=ρ |z|=ρ 1 1 (z − a)2(z − a)2 |dz| = (ρe2πit − a)2(ρe−2πit − a)2 ρ 2πie4πit ie4πit dt 1 |z − a|4 = (z − a)2(z − a) 2 1 1 0 −i ρ 1 −iρ a2 0 ρ2πie4πit (ρe2πit − a)2(ρ − ae2πit)2 dt = = −i dz a )2(z − a)2 We consider two cases. First, suppose |a| > ρ. Then z(z − a)−2 is holomorphic on and inside {|z| = ρ} and ρ2 a lies inside {|z| = ρ}. By Cauchy’s differentiation formula, ρ z)2(z − a)2 (z − ρ2 (ρ − a (z − a)−2 − 2z(z − a)−3 |z − a|−4 |dz| = 2πi 1 − 2 |z|=ρ |z|=ρ dz = 2πρ = z z z= ρ2 a a2( ρ2 a − a)2 ρ2 a − a) a( ρ2 −iρ a2 −2πρ(ρ2 + |a|2) (ρ2 − |a|2)3 = = 2πρ(ρ2 + |a|2) (|a|2 − ρ2)3 |z|=ρ |z|=ρ Now, suppose |a| < ρ. Then ρ2 inside {|z| = ρ}. By Cauchy’s differentiation formula, a lies outside |z| = ρ, so the function z(z − ρ2 |z − a|−4 |dz| = 2πi −iρ a2 −2πρ = (|a|2 − ρ2)2 a )−2 is holomorphic on and 1 − 2 a (a − ρ2 a ) (z − ρ2 a )−2 − 2z(z − ρ2 a )−3 z=a (a + ρ2 a ) a − ρ2 a = −2πρ(|a|2 + ρ2) (|a|2 − ρ2)3 = = 2πρ a2(a − ρ2 a )2 2πρ(|a|2 + ρ2) (ρ2 − |a|2)3 4.2.3 Exercise 2 Let f : C → C be a holomorphic function satisfying the following condition: there exists R > 0 and n ∈ N such that |f (z)| < |z|n ∀|z| ≥ R. For every r ≥ R, we have by the Cauchy differentiation formula that for all m > n, f (m)(a) ≤ m! 2π |z|n |z|m+1 |dz| ≤ m! rm−n |z|=r Noting that m − n ≥ 1 and letting r → ∞, we have that f (m)(a) = 0. Since f is entire, for every a ∈ C, we may write f (z) = f (a) + f(a)(z − a) + ··· + (z − a)n + fn+1(z)(z − a)n+1 ∀z ∈ C f (n)(a) n! where fn+1 is entire. Since fn+1(a) = f (n+1)(a) = 0 and a ∈ C was arbitary, we have that fn+1 ≡ 0 on C. Hence, f is a polynomial of degree at most n. 5
+ cn−2 h(0) 1! g(z) − cn−1 z→∞ g(z) − cn−1 lim z→0 zn−1 + Local Properties of Analytical Functions 4.3.2 Exercise 2 Let f : C → C be an entire function with a nonessential singularity at ∞. Consider the function g(z) = f 1 at z = 0. Let n ∈ N be minimal such that limz→0 zng(z) = 0. Then the function zn−1g(z) has an analytic continuation h(z) defined on all of C. By Taylor’s theorem, we may express h(z) as z zn−1g(z) = h(z) = h(0) cn−1 h(0) 2! z2 + ··· + h(n−1)(0) (n − 1)! z + c0 zn−1 + hn(z)zn ∀z = 0 where hn : C → C is holomorphic. Hence, = lim z→0 zhn(z) = 0 cn−2 zn−2 + ··· + c0 cn−2 zn−2 + ··· + c0 And since f is entire. Note that we also obtain that c0 = f (0). Hence, g(z) − cn−1 zn−1 + f (z) = f (0) = lim z→0 lim are abusing notation to denote the continuation to all of C) is a bounded entire function and is therefore identically zero by Liouville’s theorem. Hence, zn−1 + cn−2 zn−2 + ··· + c0 (we ∀z = 0, f (z) = cn−1zn−1 + cn−2zn−2 + ··· + c0 Since f (0) = c0, we obtain that f is a polynomial. k=1 of C. By definition, the function ˜f (z) = f 1 has either a removable singularity or a pole at z = 0. 4.3.2 Exercise 4 Let f : C ∪ {∞} → C ∪ {∞} be a meromorphic function in the extended complex plane. First, I claim that f has finitely many poles. Since the poles of f are isolated points, they form an at most countable subset {pk}∞ In either case, there exists r > 0 such that ˜f is holomorphic on D(0; r). Hence, {pk}∞ k=1 ⊂ D(0; r). Since this set is bounded, {pk}∞ k=1 has a limit point p. By continuity, f (p) = ∞ and therefore p is a pole. Since p is an isolated point, there must exist N ∈ N such that ∀k ≥ N, pk = p. Our reasoning in the preceding Exercise 2 shows that for any pole pk = ∞ of order mk, we can write in a neighborhood of pk (z − pk)mk−1 + ··· + (z − pk)mk c1 z − pk cmk−1 +gk(z) f (z) = + c0 cmk + z and cm∞ fk(z) where gk is holomorphic in a neighborhood of pk. If p = ∞ is a pole, then analogously, c1 z + c0 ˜f∞(z) ˜f (z) = +˜g∞(z) zm∞ + where ˜g∞ is holomorphic in a neighborhood of 0. For clarification, the coefficients cn depend on the pole, cm∞−1 zm∞−1 + ··· + but we omit the dependence for convenience. Set f∞(z) = ˜f∞ 1 h(z) = f (z) − f∞(z) − n i=k fk(z) and in a neighborhood of z∞ as h(z) = g∞(z) −n − f∞ 1 h can be written as h(z) = gk(z) − which are sums of holomorphic functions. ˜h(z) = h 1 are polynomials and f 1 is evidently bounded in a neighborhood of 0 since = ˜g∞(z), which is holomorphic in a neighborhood of 0. By I claim that h is (or rather, extends to) an entire, bounded function. Indeed, in a neighborhood of each zk, k=1 fk(z), the fk Liouville’s theorem, h is a constant. It is immediate from the definition of h that f is a rational function. 1 fk(z) k=1 z z z z z 6
Calculus of Residues 4.5.2 Exercise 1 Set f (z) = 6z3 and g(z) = z7 − 2z5 − z + 1. Clearly, f, g are entire, |f (z)| > |g(z)| ∀|z| = 1, and f (z) + g(z) = z7 − 2z5 + 6z3 − z + 1. By Rouch´e’s theorem, f and f + g have the same number of zeros, which is 3 (counted with order), in the disk {|z| < 1}. Section 4.5.2 Exercise 2 Set f (z) = z4 and g(z) = −6z + 3. Clearly, f, g are entire, |f (z)| > |g(z)| ∀|z| = 2. By Rouch´e’s theorem, z4−6z +3 has 4 roots (counted with order) in the open disk {|z| < 2}. Now set f (z) = −6z and g(z) = z4 +3. Clearly, |f (z)| > |g(z)| ∀|z| = 1. By Rouch´e’s theorem, z4 − 6z + 3 = 0 has 1 root in the in the open disk {|z| < 1}. Observe that if z ∈ {1 ≤ |z| < 2} is root, then by the reverse triangle inequality, 3 = |z|z3 − 6 ≥ |z||z|3 − 6 So |z| ∈ (1, 2). Hence, the equation z4 − 6z + 3 = 0 has 3 roots (counted with order) with modulus strictly between 1 and 2. 4.5.3 Exercise 1 1. Set f (z) = 1 z2+5z+6 = 2. Set f (z) = 1 (z2−1)2 = (z+3)(z+2) . Then f has poles z1 = −2, z2 = −3 and by Cauchy integral formula, 1 res(f ; z1) = res(f ; z2) = 1 2πi 1 2πi |z+2|= 1 2 |z+3|= 1 2 (z + 3)−1 (z + 2) (z + 2)−1 (z + 3) dz = 1 z + 3 |z=−2 = 1 dz = 1 z + 2 |z=−3 − 1 (z−1)2(z+1)2 . Then f has poles z1 = −1, z2 = −1. Applying Cauchy’s differentia- 1 tion formula, we obtain res(f ; z1) = res(f ; z2) = 1 2πi 1 2πi (z − 1)−2 (z + 1)2 dz = −2(z − 1)−3|z=−1 = (z + 1)−2 (z − 1)2 dz = −2(z + 1)−3|z=1 = − 1 1 4 4 |z+1|=1 |z−1|=1 3. sin(z) has zeros at kπ, k ∈ Z, hence sin(z)−1 has poles at zk = kπ. We can write sin(z) = (z − zk) [cos(zk) + gk(z)], where gk is holomorphic and gk(zk) = 0. By the Cauchy integral formula, res(f ; zk) = 1 2πi |z−zk|=1 [f(zk) + gk(z)] −1 (z − zk) dz = 1 f(zk) + g(zk) = (−1)k 4. Set f (z) = cot(z). Since sin(z) has zeros at zk = kπ, k ∈ Z and cos(zk) = 0, cot(z) has poles at zk, k ∈ Z. We can write sin(z) = (z − zk) [cos(zk) + gk(z)], where gk is holomorphic and gk(zk) = 0. By Cauchy’s integral formula, res(f ; zk) = 1 2πi |z−zk|=1 cos(z) [cos(zk) + gk(z)] (z − zk) −1 dz = cos(zk) cos(zk) + gk(zk) = 1 5. It follows from (3) that f (z) = sin(z)−2 has poles at zk = kπ, k ∈ Z. We remark further that gk(z) = − cos(zk)(z − zk)2 + hk(z), where hk(z) is holomorphic. By the Cauchy differentiation formula, res(f ; zk) = 1 2πi |z−zk|=1 −2 [cos(zk) + gk(z)] (z − zk)2 dz = −2 g k(zk) (cos(zk) + gk(zk))3 = 0 7
6. Evidently, the poles of f (z) = zm(1−z)n are z1 = 0, z2 = 1. By Cauchy’s differentiation formula, 1 1 2πi res(f ; z1) = (1 − z)−n dz = (n + m − 2)! (n − 1)!(m − 1)! = |z|= 1 2 zm res(f ; z2) = (−1)n 2πi z−m (z − 1)n dz = |z−1|= 1 2 (−1)n(−1)n−1(m + n − 2)! (m − 1)! n + m − 2 n + m − 2 m − 1 = − n − 1 4.5.3 Exercise 3 (a) Since a + sin2(θ) = a + 1−cos(2θ) = 2 [(2a + 1) − cos(2θ)], we have π 2 2 π 2 dθ dθ 0 0 = 2 (2a + 1) − cos(2θ) a + sin2(θ) π the integrand. Ahlfors p. 155 computes π = 0 π 0 dτ = dt (2a + 1) − cos(t) = 0 dτ −π (2a + 1) + cos(τ ) where we make the change of variable τ = θ − π, and the last equality follows from the symmetry of (2a + 1) + cos(τ ) π 2 dx α+cos(x) = π√ α2−1 0 for α > 1. Hence, dθ a + sin2(θ) 0 (2a + 1)2 − 1 π = (b) Set f (z) = For R >> 0, z4 + 5z2 + 6 z2 z2 = (z2 + 3)(z2 + 2) 3i)(z − √ γ1 : [−R, R] → C, γ1(t) = t; γ2 : [0, π] → C, γ2(t) = Reit (z − √ 3i)(z + √ = z2 √ 2i) 2i)(z + and let γ be the positively oriented closed curve formed by γ1, γ2. By the residue formula and applying the Cauchy integral formula to eiz z+ai to compute res(f ; ai), γ f (z)dz = 2πires(f ; 3i) + 2πires(f ; √ √ 2i) It is immediate from Cauchy’s integral formula that √ 2πires(f ; 3i) = √ 2i) = 2πires(f ; 3)−1(z2 + 2)−1 √ z2(z + i √ (z − i √ 2)−1(z2 + 3)−1 √ (z − i 3) 2) z2(z + i |z−i √ 3|= |z−i √ 2|= √ (i dz = 2πi · √ ((i 3)2 √ 3)2 + 2)(2i √ 3π = 3) dz = 2πi · √ ((i √ (i 2)2 2)2 + 3)(2i √ = − 2π √ 2) Using the reverse triangle inequality, we obtain the estimate ≤ ∞ γ2 f (z)dz x2 Hence, ∞ 2 x2 = x4 + 5x2 + 6 0 −∞ x4 + 5x2 + 6 πR3 |R2 − 3||R2 − 2| → 0, R → ∞ √ dx = ( 3 − √ 2)π ⇒ ∞ x2dx x4 + 5x2 + 6 0 √ 3 − √ ( 2)π 2 = 8
分享到:
收藏