logo资料库

Statistics_for_Spatial_Data(Noel_Cressie).pdf

第1页 / 共931页
第2页 / 共931页
第3页 / 共931页
第4页 / 共931页
第5页 / 共931页
第6页 / 共931页
第7页 / 共931页
第8页 / 共931页
资料共931页,剩余部分请下载后查看
Cover
Title Page
Copyright Page
Contents
Preface
Acknowledgments
1. Statistics for Spatial Data
1.1 Spatial Data and Spatial Models
1.2 Introductory Examples
1.2.1 Geostatistical Data
1.2.2 Lattice Data
1.2.3 Point Patterns
1.3 Statistics for Spatial Data: Why?
PART I GEOSTATISTICAL DATA
2. Geostatistics
2.1 Continuous Spatial Index
2.2 Spatial Data Analysis of Coal Ash in Pennsylvania
2.2.1 Intrinsic Stationarity
2.2.2 Square-Root-Differences Cloud
2.2.3 The Pocket Plot
2.2.4 Decomposing the Data into Large- and Small-Scale Variation
2.2.5 Analysis of Residuals
2.2.6 Variogram of Residuals from Median Polish
2.3 Stationary Processes
2.3.1 Variogram
2.3.2 Covariogram and Correlogram
2.4 Estimation of the Variogram
2.4.1 Comparison of Variogram and Covariogram Estimation
2.4.2 Exact Distribution Theory for the Variogram Estimator
2.4.3 Robust Estimation of the Variogram
2.5 Spectral Representations
2.5.1 Valid Covariograms
2.5.2 Valid Variograms
2.6 Variogram Model Fitting
2.6.1 Criteria for Fitting a Variogram Model
2.6.2 Least Squares
2.6.3 Properties of Variogram-Parameter Estimators
2.6.4 Cross-Validating the Fitted Variogram
3. Spatial Prediction and Kriging
3.1 Scale of Variation
3.2 Ordinary Kriging
3.2.1 Effect of Variogram Parameters on Kriging
3.2.2 Lognormal and Trans-Gaussian Kriging
3.2.3 Cokriging
3.2.4 Some Final Remarks
3.3 Robust Kriging
3.4 Universal Kriging
3.4.1 Universal Kriging of Coal-Ash Data
3.4.2 Trend-Surface Prediction
3.4.3 Estimating the Variogram for Universal Kriging
3.4.4 Bayesian Kriging
3.4.5 Kriging Revisited
3.5 Median-Polish Kriging
3.5.1 Gridded Data
3.5.2 Nongridded Data
3.5.3 Median Polishing Spatial Data: Inference Results
3.5.4 Median-Based Covariogram Estimators are Less Biased
3.6 Geostatistical Data Simulated and Real
3.6.1 Simulation of Spatial Processes
3.6.2 Conditional Simulation
3.6.3 Geostatistical Data
4. Applications of Geostatistics
4.1 Wolfcamp-Aquifer Data
4.1.1 Intrinsic-Stationarity Assumption
4.1.2 Nonconstant-Mean Assumption
4.2 Soil–Water Tension Data
4.3 Soil–Water-Infiltration Data
4.3.1 Estimating and Modeling the Spatial Dependence
4.3.2 Inference on Mean Effects (Spatial Analysis of Variance)
4.4 Sudden-Infant-Death-Syndrome Data
4.5 Wheat-Yield Data
4.5.1 Presence of Trend in the Data
4.5.2 Intrinsic Stationarity
4.5.3 Median-Polish (Robust) Kriging
4.6 Acid-Deposition Data
4.6.1 Spatial Modeling and Prediction
4.6.2 Sampling Design
4.7 Space–Time Geostatistical Data
5. Special Topics in Statistics for Spatial Data
5.1 Nonlinear Geostatistics
5.2 Change of Support
5.3 Stability of the Geostatistical Method
5.3.1 Estimation of Spatial-Dependence Parameters
5.3.2 Stability of the Kriging Predictor
5.3.3 Stability of the Kriging Variance
5.4 Intrinsic Random Functions of Order k
5.5 Applications of the Theory of Random Processes
5.6 Spatial Design
5.6.1 Spatial Sampling Design
5.6.2 Spatial Experimental Design
5.7 Field Trials
5.7.1 Nearest-Neighbor Analyses
5.7.2 Analyses Based on Spatial Modeling
5.8 Infill Asymptotics
5.9 The Many Faces of Spatial Prediction
5.9.1 Stochastic Methods of Spatial Prediction
5.9.2 Nonstochastic Methods of Spatial Prediction
5.9.3 Comparisons and Some Final Remarks
PART II LATTICE DATA
6. Spatial Models on Lattices
6.1 Lattices
6.2 Spatial Data Analysis of Sudden Infant Deaths in North Carolina
6.2.1 Nonspatial Data Analysis
6.2.2 Spatial Data Analysis
6.2.3 Trend Removal
6.2.4 Some Final Remarks
6.3 Conditionally and Simultaneously Specified Spatial Gaussian Models
6.3.1 Simultaneously Specified Spatial Gaussian Models
6.3.2 Conditionally Specified Spatial Gaussian Models
6.3.3 Comparison
6.4 Markov Random Fields
6.4.1 Neighbors Cliques and the Negpotential Function Q
6.4.2 Pairwise-Only Dependence and Conditional Exponential Distributions
6.4.3 Some Final Remarks
6.5 Conditionally Specified Spatial Models for Discrete Data
6.5.1 Binary Data
6.5.2 Counts Data
6.6 Conditionally Specified Spatial Models for Continuous Data
6.7 Simultaneously Specified and Other Spatial Models
6.7.1 Simultaneously Specified Spatial Models
6.7.2 Other Spatial Models
6.8 Space–Time Models
7. Inference for Lattice Models
7.1 Inference for the Mercer and Hall Wheat-Yield Data
7.1.1 Data Description
7.1.2 Spatial Lattice Models
7.2 Parameter Estimation for Lattice Models
7.2.1 Estimation Criteria
7.2.2 Gaussian Maximum Likelihood Estimation
7.2.3 Some Computational Details
7.3 Properties of Estimators
7.3.1 Increasing-Domain Asymptotics
7.3.2 The Jackknife and Bootstrap for Spatial Lattice Data
7.3.3 Cross-Validation and Model Selection
7.4 Statistical Image Analysis and Remote Sensing
7.4.1 Remote Sensing
7.4.2 Ordinary Discriminant Analysis
7.4.3 Markov-Random-Field Models
7.4.4 Edge Processes
7.4.5 Textured Images
7.4.6 Single Photon Emission Tomography
7.4.7 Leas Squares and Image Regularization
7.4.8 Method of Sieves
7.4.9 Mathematical Morphology
7.5 Regional Mapping Scotland Lip-Cancer Data
7.5.1 Exploratory Regional Mapping
7.5.2 Parametric Empirical Bayes Mapping
7.6 Sudden-Infant-Death-Syndrome Data
7.6.1 Exploratory Spatial Data Analysis
7.6.2 Auto-Poisson Model
7.6.3 Auto-Gaussian Model
7.7 Lattice Data Simulated and Real
7.7.1 Simulation of Lattice Processes
7.7.2 Lattice Data
PART III SPATIAL PATTERNS
8. Spatial Point Patterns
8.1 Random Spatial Index
8.2 Spatial Data Analysis of Longlea Pines (Pinus palustris)
8.2.1 Data Description
8.2.2 Complete Spatial Randomness Regularity, and Clustering
8.2.3 Quadra Methods
8.2.4 Kernel Estimators of the Intensity Function
8.2.5 Distance Methods
8.2.6 Nearest-Neighbor Distribution Functions and the K Function
8.2.7 Some Final Remarks
8.3 Point Process Theory
8.3.1 Moment Measures
8.3.2 Generating Functionals
8.3.3 Stationary and Isotropic Point Processes
8.3.4 Palm Distributions
8.3.5 Reduced Second Moment Measure
8.4 Complete Spatial Randomness Distance Functions, and Second Moment Measures
8.4.1 Complete Spatial Randomness
8.4.2 Distance Functions
8.4.3 K Functions
8.4.4 Animal-Behavior Data
8.4.5 Some Final Remarks
8.5 Models and Model Fitting
8.5.1 Inhomogeneous Poisson Process
8.5.2 Cox Process
8.5.3 Poisson Cluster Process
8.5.4 Simple Inhibition Point Processes
8.5.5 Markov Point Process
8.5.6 Thinned and Related Point Processes
8.5.7 Other Models
8.5.8 Some Final Remarks
8.6 Multivariate Spatial Point Processes
8.6.1 Theoretical Considerations
8.6.2 Estimation of the Cross K Function
8.6.3 Bivariate Spatial–Point-Process Models
8.7 Marked Spatial Point Processes
8.7.1 Theoretical Considerations
8.7.2 Estimation of Moment Measures
8.7.3 Marked Spatial–Point-Process Models
8.8 Space–Time Point Patterns
8.9 Spatial Point Patterns Simulated and Real
8.9.1 Simulation of Spatial Point Patterns
8.9.2 Spatial Point Patterns
9. Modeling Objects
9.1 Set Models
9.1.1 Fractal Sets
9.1.2 Fuzzy Sets
9.1.3 Random Closed Sets: An Example
9.2 Random Parallelograms in R2
9.3 Random Closed Sets and Mathematical Morphology
9.3.1 Theory and Methods
9.3.2 Inference on Random Closed Sets
9.4 The Boolean Model
9.4.1 Main Properties
9.4.2 Generalizations of the Boolean Model
9.5 Methods of Boolean-Model Parameter Estimation
9.5.1 Analysis of Random-Parallelograms Data
9.5.2 Analysis of Heather-Incidence Data
9.5.3 Intensity Estimation in the Boolean Model
9.6 Inference for the Boolean Model
9.7 Modeling Growth with Random Sets
9.7.1 Random-Se Growth Models
9.7.2 Tumor-Growth Data
9.7.3 Fitting the Tumor-Growth Parameters
References
Author Index
Subjec Index
EULA
W I L EY S E R I ES IN P R O B A B I L I TY A ND M A T H E M A T I C AL S T A T I S T I CS ESTABLISHED BY W A L T ER A. S n E W H A RT AND SAMUEL S. W l L KS Editors Vic Barnett, Ralph A. Bradley, Nicholas I. Fisher, J. Stuart Hunter, Joseph B. Kadane, David G. Kendall, Adrian F. M. Smith, Stephen M. Stigler, Jozef L. Teugels, Geoffrey S. Watson Probability and Mathematical Statistics · T he Geometry of R a n d om Fields A D L ER A N D E R S ON A N D E R S ON Second · T he Statistical Analysis of Time Series · An Introduction to Multivariate Statistical Analysis, Edition · T he Theory of Linear Models and Multivariate Analysis · Comparative Statistical Inference, Second Edition · Bayesian Statistical Concepts and Theory · Statistical Concepts and Methods · Probability and Measure, Second Edition · Asymptotic Methods in Q u e u i ng Theory · Introduction to Combinatorial Theory · Recursive Estimation and Control for Stochastic Systems · Contributions to Statistics · Planning and Analysis of Observational Studies · Combinatorial Theory and Statistical Design · Elements of Information Theory · Linear Stochastic Systems A R N O LD B A R N E TT B E R N A R DO and S M I TH B H A T T A C H A R Y YA and J O H N S ON B I L L I N G S L EY B O R O V K OV B O SE and M A N V EL C A I N ES C H EN C O C H R AN C O C H R AN C O N S T A N T I NE C O V ER and T H O M AS * D O OB D U D E W I CZ and M I S H RA E A T ON E T H I ER and K U R TZ F E L L ER · Stochastic Processes Introduction · An · Multivariate Statistics: A Vector Space A p p r o a ch · Modern Mathematical Statistics · Markov Processes: Characterization and Convergence to Probability Theory and Its Applications, Volume I, · Statistical Inference for Branching Processes Third Edition, Revised; Volume II, Second Edition · Introduction to Statistical Time Series · M e a s u r e m e nt Error Models · Nonlinear Multivariate Analysis · Abstract Inference F U L L ER F U L L ER GIFI G R E N A N D ER G U T T O RP H A LD H A LL H A N N AN and D E I S T L ER H E D A Y AT and S I N HA H O EL H U B ER I M AN and C O N O V ER I O S I F E S CU J O H N S ON and B H A T T A C H A R Y YA · Robust Statistics · A Modern Approach to Statistics · Finite Markov Processes and Applications · Introduction to Mathematical Statistics, Fifth Edition · A History of Probability and Statistics and Their Applications before 1750 · Introduction to the Theory of Coverage Processes · T he Statistical Theory of Linear Systems · Design and Inference in Finite Population Sampling · Statistics: Principles and Methods, Revised Printing L A HA and R O H A T GI L A R S ON Third Edition · Probability Theory · Introduction to Probability Theory and Statistical Inference, · Infinitely Divisible Point Processes · Configurai Polysampling: A Route to Practical M A T T H E S, K E R S T A N, and M E C KE M O R G E N T H A L ER and T U K EY Robustness M U I R H E AD O L I V ER and S M I TH P I LZ P R E SS P U RI and S EN P U RI and SEN P U R I, V I L A P L A N A, and W E R TZ Statistics · Aspects of Multivariate Statistical Theory · Influence Diagrams, Belief Nets and Decision Analysis · Bayesian Estimation and Experimental Design in Linear Regression Models · Bayesian Statistics: Principles, Models, and Applications · Nonparametric Methods in General Linear Models · Nonparametric Methods in Multivariate Analysis · New Perspectives in Theoretical and Applied R A N D L ES and W O L FE R AO · Asymptotic Theory of Statistical Inference · Introduction to the Theory of Nonparametric Statistics *Now available in a lower priced paperback edition in the Wiley Classics Library.
Probability and Mathematical Statistics (Continued) · Linear Statistical Inference and Its Applications, Second R AO R O B E R T S O N, W R I G H T, and D Y K S T RA R O G E RS and W I L L I A MS · Diffusions, Markov Processes, and Martingales, Volume · O r d er Restricted Statistical Inference Edition II: îto Calculus · Stochastic Processes · Statistical Inference · Algebraic Probability Theory · Simulation and the Monte Carlo Method · T he Analysis of Variance · Linear Regression Analysis · Multivariate Observations R O H A T GI R O SS R U B I N S T E IN R U Z SA and S Z E K E LY S C H E F FE S E B ER S E B ER S E B ER and W I LD S EN S E R F L I NG S H O R A CK and W E L L N ER * Empirical Processes with Applications to Statistics S T AU D TE and S H E A T H ER S T O Y A N OV STY AN W H I T T A K ER Y A NG · Graphical Models in Applied Multivariate Statistics · T he Construction Theory of D e n u m e r a b le Markov Processes · Sequential Nonparametrics: Invariance Principles and Statistical Inference · T he Collected Papers of T. W. Anderson: 1943-1985 · Approximation T h e o r e ms of Mathematical Statistics · Counterexamples in Probability · Robust Estimation and Testing · Nonlinear Regression Applied Probability and Statistics A B R A H AM and L E D O L T ER A G R E S TI A G R E S TI A I C K IN A N D E R S ON and L O Y N ES · T he Teaching of Practical Statistics A N D E R S O N, A U Q U I E R, H A U C K, O A K E S, V A N D A E L E, and · Analysis of Ordinal Categorical D a ta · Categorical D a ta Analysis · Linear Statistical Analysis of Discrete D a ta · Statistical M e t h o ds for Forecasting W E I S B E RG · Statistical M e t h o ds for Comparative Studies A R T H A N A RI and D O D GE A S M U S S EN *BAILEY · Applied Probability and Q u e u es · Mathematical Programming in Statistics · T he Elements of Stochastic Processes with Applications to the Natural · Interpreting Multivariate Data Sciences B A R N E TT B A R N E TT and L E W IS B A R T H O L O M EW B A R T H O L O M EW and F O R B ES B A T ES and W A T TS B E CK and A R N O LD B E L S L EY B E L S L E Y, K U H, and W E L S CH D a ta and Sources of Collinearity · Outliers in Statistical Data, Second Edition · Stochastic Models for Social Processes, Third Edition · Statistical Techniques for M a n p o w er Planning · Nonlinear Regression Analysis and Its Applications · Parameter Estimation in Engineering and Science · Conditioning Diagnostics: Collinearity and W e ak D a ta in Regression · Regression Diagnostics: Identifying Influential · Elements of Applied Stochastic Processes, Second B H AT B H A T T A C H A R YA and W A Y M I RE B I E M E R, G R O V E S, L Y B E R G, M A T H I O W E T Z, and S U D M AN · Stochastic Processes with Applications Edition · Measurement Errors in Surveys B L O O M F I E LD B O L L EN B OX B OX and D R A P ER B OX and D R A P ER Improvement · Fourier Analysis of Time Series: An Introduction · Structural Equations with Latent Variables · R. A. Fisher, the Life of a Scientist · Empirical Model-Building and Response Surfaces · Evolutionary Operation: A Statistical Method for Process BOX, H U N T E R, and H U N T ER · Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building B R O WN and H O L L A N D ER B U C K L EW BUNKF. and B U N KE · Large Deviation Techniques in Decision, Simulation, and Estimation · Nonlinear Regression, Functional Relations and Robust · Statistics: A Biomedical Introduction Methods: Statistical Methods of Model Building · Statistical Inference in Linear Models, Volume I · Computational M e t h o ds for D a ta Analysis · Sensitivity Analysis in Linear Regression · Regression Analysis by Example, Second Edition · Econometric Analysis by Control M e t h o ds B U N KE and B U N KE C H A M B E RS C H A T T E R J EE and H A DI C H A T T E R J EE and P R I CE C H OW C L A R KE and D I S N EY Applications, Second · Probability and R a n d om Processes: A First Course with Edition C O C H R AN * Sampling Techniques, Third Edition *Now available in a lower priced paperback edition in the Wiley Classics Library.
Applied Probability and Statistics (Continued) COCHRAN and COX CONOVER CONOVER and IMAN · Introduction to Modern Business Statistics CORNELL · Experiments with Mixtures, Designs, Models, and the Analysis of Mixture · Practical Nonparametric Statistics, Second Edition · Experimental Designs, Second Edition Data, Second Edition · A Handbook of Introductory Statistical Methods · Planning of Experiments COX COX CRESSIE · Statistics for Spatial Data DANIEL DANIEL Edition · Applications of Statistics to Industrial Experimentation · Biostatistics: A Foundation for Analysis in the Health Sciences, Fourth · Fitting Equations to Data: Computer Analysis of Multifactor DANIEL and WOOD Data, Second Edition · Multidimensional Scaling · Order Statistics, Second Edition · Sample Design in Business Research DAVID DAVISON DEGROOT, FIENBERG, and KADANE *DEMING DILLON and GOLDSTEIN DODGE · Analysis of Experiments with Missing Data DODGE and ROMIG DOWDY and WEARDEN DRAPER and SMITH DUNN DUNN and CLARK · Applied Statistics: Analysis of Variance and Regression, Second · Sampling Inspection Tables, Second Edition · Statistics for Research, Second Edition · Basic Statistics: A Primer for the Biomedical Sciences, Second Edition · Multivariate Analysis: Methods and Applications · Applied Regression Analysis, Second Edition · Statistics and the Law Edition · Survival Models and Data Analysis ELANDT-JOHNSON and JOHNSON FLEISS · The Design and Analysis of Clinical Experiments FLEISS · Statistical Methods for Rates and Proportions, Second Edition FLEMING and HARRINGTON FLURY FRANKEN, KÖNIG, ARNDT, and SCHMIDT · Queues and Point Processes GALLANT GIBBONS, OLKIN, and SOBEL · Selecting and Ordering Populations: A New · Counting Processes and Survival Analysis · Common Principal Components and Related Multivariate Models · Nonlinear Statistical Models GNANADESIKAN · Methods for Statistical Data Analysis of Multivariate Statistical Methodology Observations GREENBERG and WEBSTER GROSS and HARRIS GROVES GROVES, BIEMER, LYBERG, MASSEY, NICHOLLS, and WAKSBERG · Fundamentals of Queueing Theory, Second Edition · Advanced Econometrics: A Bridge to the Literature · Survey Errors and Survey Costs · Telephone Survey Methodology GUPTA and PANCHAPAKESAN Methodology of Selecting and Ranking Populations GUTTMAN, WILKS, and HUNTER · Introductory Engineering Statistics, Third · Multiple Decision Procedures: Theory and · Statistical Intervals: A Guide for Practitioners · Statistical Models in Engineering HAHN and MEEKER HAHN and SHAPIRO HALD HALD HAND HEIBERGER HELLER HOAGLIN, MOSTELLER, and TUKEY · Statistical Tables and Formulas · Statistical Theory with Engineering Applications · Discrimination and Classification · MACSYMA for Statisticians · Computation for the Analysis of Designed Experiments · Exploratory Approach to Analysis of Edition HOAGLIN, MOSTELLER, and TUKEY HOAGLIN, MOSTELLER, and TUKEY · Exploring Data Tables, Trends and Shapes · Understanding Robust and Exploratory Variance Data Analysis · Multiple Comparison Procedures HOCHBERG and TAMHANE HOEL · Elementary Statistics, Fourth Edition HOEL and JESSEN HOGG and KLUGMAN HOLLANDER and WOLFE · Nonparametric Statistical Methods HOSMER and LEMESHOW · Applied Logistic Regression · Loss Distributions · Basic Statistics for Business and Economics, Third Edition Continued on back end papers *Now available in a lower priced paperback edition in the Wiley Classics Library.
Statistics for Spatial Data
Statistics for Spatial Data
Statistics for Spatial Data Revised Edition N O EL A. C. C R E S S IE Iowa State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York · Chichester · Toronto · Brisbane · Singapore
分享到:
收藏