MIMO OFDM MATLAB 仿真程序一
OFDM.m: OFDM Simulator (outer function) clear all;
A = [1 1/exp(1) 1/exp(2)]; % power delay profile N = 64; % number of
symbols in a single OFDM symbol GI = 16; % guard interval
Mt = 1; % number of Tx antennas
Mr = 1; % number of Rx antennas
sig2 = 1e-3; % noise variance
M = 8; % max constellation bit number
Mgap = 10.^(1:(1.7/10):2.7); % gap
Btot = 100*Mt; % total # bits per OFDM symbol TransmitIter = 50; % #
iterations of symbol transmissions for each channel instance
ChannelIter = 100; % # iterations of independent identically
distributed channel instances
GapIter = length(Mgap);
load ENC2.mat
load ENC4.mat
load ENC16.mat
load ENC64.mat
load ENC256.mat
TotEbNo = [];
Errors =[];
EbNo = [];
for lGap = 1:GapIter
lGap
gap = Mgap(lGap);
totalErrors = 0;
for lChan = 1:ChannelIter
% create channel
[H h_f]=create_channel(Mt, Mr, A, N+GI);
% decompose each subchannel in the frequency domain [U S V] =
svd_decompose_channel(Mt, Mr, h_f, N);
% bitloading
[bits_alloc,energy_alloc] = BitLoad(S,Btot,Mt*N,gap,sig2,M);
%energy_alloc=energy_alloc/(mean(energy_alloc));
%energy_alloc=ones(1,128);
for lTrans = 1:TransmitIter
% bits to transmit
x = (randn(1,Btot)>0);
% modulate
x_mod = modulate(x,bits_alloc,energy_alloc, s2,s4,s16,s64,s256);
% precode modulated signal
x_pre = precode(Mt, x_mod, V, N);
% ifft, with cyclic prefix for each antenna
ofdm_symbol =[];
for i=1:Mt
ofdm_symbol = [ofdm_symbol; ifft_cp_tx_blk(x_pre(i:Mt:Mt*(N-
1)+i),N,GI)]; end
ofdm_symbol2 = reshape(ofdm_symbol,Mt*(N+GI),1);
% channel
y = transpose(channel(sig2, Mt, Mr, ofdm_symbol2, H, N+GI));
% fft
rec_symbol =[];
for i=1:Mt
rec_symbol = [rec_symbol; fft_cp_rx_blk(y(i:Mt:Mt*(N+GI-1)+i),N,GI)];
end
rec_symbol2 = reshape(rec_symbol,1,Mt*N);
% shape received signal
shaped_vals = shape(rec_symbol2, Mr, U, N);
% demodulate
y_demod = demodulate(shaped_vals, bits_alloc, energy_alloc, S,
s2,s4,s16,s64,s256, c2,c4,c16,c64,c256);
% comparison
totalErrors = totalErrors + sum(xor(y_demod,x));
end
EbNo = [EbNo sum(energy_alloc)/Btot/sig2];
end
Errors = [Errors totalErrors/Btot/ChannelIter/TransmitIter] TotEbNo
= [TotEbNo mean(EbNo)]
EbNo = [];
end
semilogx(TotEbNo, Errors);
xlabel('Eb/No');
ylabel('BER');
title('SISO link, adaptive rate and power')
save SISO_adaptive2.mat Errors EbNo
create_channel.m: Generates a Rayleigh fading frequency-selective
channel,
parametrized by the antenna configuration, the OFDM configuration,
and the
power-delay profile.
function [H, H_f]=create_channel(Mt, Mr, A, N); % function [H,
H_f]=create_channel(Mt, Mr, A, N); %
% A - vector containing the power-delay profile (real values)
% Mt - number of Tx antennas
% Mr - number of Rx antennas
% N - number of vector symbols to be sent in a single OFDM symbol Tx
% ie: N MIMO transmissions in one OFDM symbol
% This is for Rayleigh frequency-selective fading, which assumes
complex
% Gaussian matrix elements with in-phase and quadrature components
independent.
% Assume iid matrix channel elements, and further, independent
channel taps
% define the channel taps
H_int = 1/sqrt(2)*(randn(Mr*length(A),Mt) +
j*randn(Mr*length(A),Mt));
H_int2=[];
for i = 1:length(A)
H_int2 = [H_int2;sqrt(A(i))*H_int((i-1)*Mr+1:i*Mr,:)]; end
%h_f = fft(H_int2',64);
%%H = H_int2';
H_int2 = [H_int2;zeros((N-length(A))*Mr,Mt)];
H_f = zeros(Mr,Mt*(N-16));
for i = 1:Mt
for j = 1:Mr
h_f = fft(H_int2(j:Mr:(N-16-1)*Mr+j,i));
for k = 1:(N-16)
H_f(j,i+(k-1)*Mt) = h_f(k);
end
end
end
H=[H_int2];
for i = 1:N-1
H=[H,[zeros(Mr*i,Mt);H_int2(1:(N-i)*Mr,:)]]; end
svd_decompose_channel.m: Since full channel knowledge is assumed,
transmission
is across parallel singular value modes. This function decomposes
the channel into
these modes.
function [U, S, V] = svd_decompose_channel(Mt, Mr, h_f, N); % [U S V]
= svd_decompose_channel(Mt, Mr, h_f, N); %
% Function decomposes the channel at each subcarrier into its SVD
components
%
% Mt - # Tx antennas
% Mr - # Rx antennas
% h_f - MIMO impulse response - Mr rows, Mt*L columns, where L is
the number
of
% channel taps
% N - # subcarriers
U = [];
S = [];
V = [];
for i = 1:N
[Utmp Stmp Vtmp] = svd(h_f(:,(i-1)*Mt+1:i*Mt));
U=[U Utmp];
V=[V Vtmp];
S=[S Stmp];
end
S = sum(S,1);
BitLoad.m: Apply the bit-loading algorithm to achieve the desired
bit and energy
allocation for the current channel instance.
function [bits_alloc,energy_alloc] =
BitLoad(subchan_gains,total_bits,num_subc,gap,noise,M)
% Bit Loading Algorithm
% ---------------------
%
% Inputs :
% subchan_gains : SubCarrier Gains
% total_bits : Total Number of bits
% num_subc : Number of Subcarriers
% gap : Gap of the system
% noise : Noise Power
% M : Max Constellation Size
% Outputs:
% bits_alloc : Bits allocation for each subchannel % power_alloc :
Total Power allocation % -----------------------------------------------
----------------
% Compute SNR's for each channel
SNR = ComputeSNR(subchan_gains,noise,gap);
% This function just initializes the system with a particular bit %
allocation and energy allocation using Chow's Algorithm. This is %
further efficientize using Campello's Algorithm
[bits_alloc, energy_alloc] = chow_algo(SNR,num_subc,M);
% Form the Energy Increment Table based on the present channel %
gains for all the subchannels in order to be used by Campello %
Algorithm
energytable = EnergyTableInit(SNR,M);
% Efficientize the algorithm using the Campello's algorithm
[bits_alloc,energy_alloc] =
campello_algo(bits_alloc,energy_alloc,energytable,total_bits,num_sub
c,M
);
ComputeSNR.m: Given the subcarrier gains, this simple function
generates the SNR
values of each channel (each singular value on each tone is a
separate channel).
function SNR = ComputeSNR(subcar_gains,noise,gap)
SNR = abs((subcar_gains.^2)./(noise*gap));
chow_algo.m: Apply Chow's algorithm to generate a particular bit and
energy % Chow's Algorithm allocation. % ---------------- % This is based
on the paper by Chow et al titled
%
% A Practical Discrete Multitone Transceiver Loading Algorithm % for
Data Transmission over Spectrally Shaped Channels.IEEE Trans % on
Communications. Vol. 43, No 2/3/4, pp. 773-775, Feb/Mar/Apr 1995
function [bits_alloc, energy_alloc] = chow_algo(SNR,num_subc,M)