logo资料库

MRF导论,详细介绍了MRF的应用原理和实际应用.pdf

第1页 / 共234页
第2页 / 共234页
第3页 / 共234页
第4页 / 共234页
第5页 / 共234页
第6页 / 共234页
第7页 / 共234页
第8页 / 共234页
资料共234页,剩余部分请下载后查看
Nonparametric Markov Random Field Models for Natural Texture Images BEng(Honours), Electrical and Communications Engineering University of Tasmania, Australia Rupert D. Paget Cooperative Research Centre for Sensor Signal and Information Processing, Department of Computer Science & Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia. S CIENTIA LABORE AC Submitted as a requirement for the degree of Doctor of Philosophy (Ph.D.), The University of Queensland, February 1999.
Abstract T he underlying aim of this research is to investigate the mathematical descriptions of homogeneous textures in digital images for the purpose of segmentation and recognition. The research covers the problem of testing these mathematical descrip- tions by using them to generate synthetic realisations of the homogeneous texture for subjective and analytical comparisons with the source texture from which they were derived. The application of this research is in analysing satellite or airborne images of the Earth’s surface. In particular, Synthetic Aperture Radar (SAR) images often exhibit regions of homogeneous texture, which if segmented, could facilitate terrain classification. In this thesis we present noncausal, nonparametric, multiscale, Markov random field (MRF) models for recognising and synthesising texture. The models have the ability to capture the characteristics of, and to synthesise, a wide variety of tex- tures, varying from the highly structured to the stochastic. For texture synthesis, we introduce our own novel multiscale approach incorporating a new concept of local annealing. This allows us to use large neighbourhood systems to model complex nat- ural textures with high order statistical characteristics. The new multiscale texture synthesis algorithm also produces synthetic textures with few, if any, phase disconti- nuities. The power of our modelling technique is evident in that only a small source image is required to synthesise representative examples of the source texture, even when the texture contains long-range characteristics. We also show how the high- dimensional model of the texture may be modelled with lower dimensional statistics without compromising the integrity of the representation. We then show how these models – which are able to capture most of the unique characteristics of a texture – can be for the “open-ended” problem of recognising textures embedded in a scene containing previously unseen textures. Whilst this technique was developed for the practical application of recognising different terrain types from Synthetic Aperture Radar (SAR) images, it has applications in other image processing tasks requiring texture recognition.
ii Key words • Markov Random Fields; • Gibbs Distributions; • Parametric Estimation; • Nonparametric Estimation; • Parzen Window Density Estimator; • ANOVA Model; • Texture Modelling; • Texture Synthesis; • Open Ended Texture Classification; • Multi-resolution; • High-order Statistics; • Stochastic Relaxation; • Deterministic Relaxation; • Multiscale Relaxation; • Simulated Annealing; • Parallel Processing; • Discriminant Analysis; • Wilcoxon Test; • Kruskal-Wallis Statistic; • Terrain Mapping; • Synthetic Aperture Radar.
Contents 1 Introduction 1.1 What is texture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Human perception of texture . . . . . . . . . . . . . . . . . . 1.1.2 Computer analysis of texture . . . . . . . . . . . . . . . . . . 1.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Satellite images . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Synthetic aperture radar (SAR) images . . . . . . . . . . . . . 1.2.3 Terrain mapping . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Research purpose . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Modelling texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 4 5 5 6 8 8 9 1.3.1 Ideal texture model . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Testing the ideal texture model . . . . . . . . . . . . . . . . . 11 1.3.3 Open-ended classifier . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Building a texture model . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Determining structure of the model . . . . . . . . . . . . . . . 14 1.4.2 Fitting the model to the texture . . . . . . . . . . . . . . . . . 16 1.5 Our texture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.1 Synthesising realistic examples of texture . . . . . . . . . . . . 18 1.5.2 Open-ended classification of texture . . . . . . . . . . . . . . . 18 1.6 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 iii
iv CONTENTS 2 Background 21 2.1 Texture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.2 Applications for texture models . . . . . . . . . . . . . . . . . 25 2.1.3 Performance of texture models . . . . . . . . . . . . . . . . . . 26 2.1.4 Accuracy of texture models . . . . . . . . . . . . . . . . . . . 27 2.2 Hypothesis: high order statistics are required to model texture . . . . 29 2.3 Markov random field (MRF) model . . . . . . . . . . . . . . . . . . . 30 2.3.1 Problems in using MRF models . . . . . . . . . . . . . . . . . 33 2.4 Nonparametric Markov random field . . . . . . . . . . . . . . . . . . 34 2.4.1 Advantages in using nonparametric MRF models . . . . . . . 36 3 MRF Model 37 3.1 Random field preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 General Markov random field model . . . . . . . . . . . . . . . . . . . 39 3.3 Gibbs distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 Cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.2 The N -Potential V . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 MRF — Gibbs distribution equivalence . . . . . . . . . . . . . . . . . 46 3.4.1 Proof 1: by G. Grimmett . . . . . . . . . . . . . . . . . . . . . 46 3.4.2 Proof 2: by J. Besag . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Factorisation of the probability distribution . . . . . . . . . . . . . . 49 4 Parametric MRF Model 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Auto-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.1 Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.2 Auto-binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.3 Auto-logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
CONTENTS v 4.2.4 Auto-binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.5 Derin-Elliott . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.6 Auto-normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Maximum likelihood estimator . . . . . . . . . . . . . . . . . . 60 4.3.2 Monte Carlo maximum likelihood estimator . . . . . . . . . . 63 4.3.3 Maximum pseudo-likelihood estimator . . . . . . . . . . . . . 64 4.3.4 Coding scheme and other estimators . . . . . . . . . . . . . . 66 4.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4.1 Optimisation by simulated annealing . . . . . . . . . . . . . . 71 4.5 Goodness-of-fit testing . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 Nonparametric MRF Model 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Multi-dimensional histogram . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Parzen window density estimator . . . . . . . . . . . . . . . . . . . . 80 5.3.1 Required sample size for given accuracy . . . . . . . . . . . . 83 5.4 Alternative nonparametric estimators . . . . . . . . . . . . . . . . . . 84 5.4.1 Adaptive kernel estimator . . . . . . . . . . . . . . . . . . . . 84 5.4.2 Adaptive bin estimator . . . . . . . . . . . . . . . . . . . . . . 84 5.5 Multi-dimensional histogram compression . . . . . . . . . . . . . . . . 88 5.5.1 Unsupervised clustering . . . . . . . . . . . . . . . . . . . . . 89 5.5.2 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5.3 Adaptation for histogram compression . . . . . . . . . . . . . 93 5.6 Goodness-of-fit testing . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Strong Nonparametric MRF Model 97 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Strong MRF theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
vi CONTENTS 6.3 Proof 1 of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . 101 6.4 Proof 2 of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . 105 6.5 Equivalence with ANOVA model . . . . . . . . . . . . . . . . . . . . 111 6.6 Estimation of the strong LCPDF . . . . . . . . . . . . . . . . . . . . 113 6.7 Goodness-of-fit testing . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7 Synthesising Texture 119 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.2 Multiscale relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2.1 Averaging approach . . . . . . . . . . . . . . . . . . . . . . . . 126 7.2.2 Decimation approach . . . . . . . . . . . . . . . . . . . . . . . 127 7.3 Pixel temperature function . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4 Site visitation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.4.1 Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.4.2 Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.4.3 Parallelised relaxation . . . . . . . . . . . . . . . . . . . . . . 136 7.5 Edge effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6.1 Approximations made in the interest of speed . . . . . . . . . 139 7.7 Synthesised textures . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8 Classifying Texture 147 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Bayesian paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.3 Open-ended classification . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.3.1 Probability measurement . . . . . . . . . . . . . . . . . . . . . 153 8.3.2 Multiscale probability measurement . . . . . . . . . . . . . . . 155 8.4 Boundaries and edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
CONTENTS vii 8.5.1 Approximations made in the interest of speed . . . . . . . . . 160 8.6 Open-ended classification of textures . . . . . . . . . . . . . . . . . . 160 8.6.1 Comparative assessment of performance . . . . . . . . . . . . 165 8.7 Practical application . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 9 Discussion and Conclusion 173 9.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 A Extracting the Local Clique Set 179 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 A.2 Neighbourhoods and their cliques . . . . . . . . . . . . . . . . . . . . 180 A.3 Extraction of the local clique set . . . . . . . . . . . . . . . . . . . . . 181 A.3.1 Method 1: growing the clique tree . . . . . . . . . . . . . . . . 182 A.3.2 Method 2: reading cliques from the tree . . . . . . . . . . . . 182 A.4 Clique tree theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 A.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 185 B Synthesised Textures 187 B.1 Textures synthesised with various neighbourhoods . . . . . . . . . . . 187 B.2 Textures synthesised with various multiscales . . . . . . . . . . . . . . 355 B.3 Textures synthesised with various clique sets . . . . . . . . . . . . . . 365 C Classified Textures 391 C.1 Open ended classification of texture . . . . . . . . . . . . . . . . . . . 391 C.2 Open ended classification of terrain . . . . . . . . . . . . . . . . . . . 424 C.3 Open ended classification as a medical diagnostic . . . . . . . . . . . 429 Bibliography 431
分享到:
收藏