logo资料库

Global Positioning System:Theory and Application(Volume I).PDF

第1页 / 共807页
第2页 / 共807页
第3页 / 共807页
第4页 / 共807页
第5页 / 共807页
第6页 / 共807页
第7页 / 共807页
第8页 / 共807页
资料共807页,剩余部分请下载后查看
Table of Contents
Preface
Part I. GPS Fundamentals
Chapter 1. Introduction and Heritage of NAVSTAR, the Global Positioning System
Background and History
Predecessors
Joint Program Office Formed, 1973
Introductory GPS System Description and Technical Design
Principals of System Operation
GPS Ranging Signal
Satellite Orbital Configuration
Satellite Design
Satellite Autonomy: Atomic Clocks
Ionospheric Errors and Corrections
Expected Navigation Performance
High Accuracy/Carrier Tracking
History of Satellites
Navigation Technology Satellites
Navigation Development Satellites-Block I
Operational Satellites-Block II and IIA
Replacement Operational Satellites-Block IIR
Launches
Launch Vehicles
Initial Testing
Test Results
Conclusions
Applications
Military
Dual Use: The Civil Problem
Pioneers of the GPS
Defense Development, Research, and Engineering-Malcolm Currie and David Packard
Commander of SAMSO, General Ken Schultz
Contractors
Joint Program Office Development Team
Predecessors
Future
References
Chapter 2. Overview of GPS Operation and Design
Introduction to GPS
Performance Objectives and Quantitative Requirements on the GPS Signal
Satellite Navigation Concepts, Position Accuracy, and Requirement Signal Time Estimate Accuracy
GPS Space Segment
GPS Orbit Configuration and Multiple Access
GPS Satellite Payload
Augmentation of GPS
GPS Control Segment
Monitor Stations and Ground Antennas
Operational Control Center
GPS User Segment
GPS User Receiver Architecture
Use of GPS
GPS Signal Perturbations – Atmospheric/Ionospheric/Tropospheric Multipath Effects
Ionospheric Effects
Tropospheric Effects
Multipath Effects
Other Perturbing Effects
References
Chapter 3. GPS Signal Structure and Theoretical Performance
Introduction
Summary of Desired GPS Navigation Signal Properties
Fundamentals of Spread Spectrum Signaling
GPS Signal Structure
Multiplexing Two GPS Spread Spectrum Signals on a Single Carrier and Multiple Access of Multiple Satellite Signals
GPS Radio Frequency Selection and Signal Characteristics
Detailed Signal Structure
GPS Radio Frequency Receive GPS Power Levels and Signal-to-Noise Ratios
GPS Radio Frequency Signal Levels and Power Spectra
Satellite Antenna Pattern
Signal Specifications
User-Receiver Signal-lo-Noise Levels
Recommendations for Future Enhancements to the GPS System
Detailed Signal Characteristics and Bounds on Pseudorange Tracking Accuracy
Cross-Correlation Properties-Worst Case
Coarse/Acquisition-Code Properties
Bounds on GPS Signal Tracking Performance in Presence of White Thermal Noise
Appendix: Fundamental Properties of Maximal Length Shift Registers and Gold Codes
References
Chapter 4. GPS Navigation Data
Introduction
Overall Message Content of the Navigation Data
Navigation Data Subframe. Frame. and Superframe
Detailed Description of the Navigation Data Subframe
Subframe 1-GPS Clock Correction and Space Vehicle Accuracy
GPS Ephemeris Parameters-Subframes 2 and 3
Subframes 4 and 5-Almanac, Space Vehicle Health, and Ionosphere Models
Time, Satellite Clocks, and Clock Errors
Mean Solar, Universal Mean Sidereal, and GPS Time
Clock Accuracy and Clock Measurement Statistics
Satellite Orbit and Position
Coordinate Systems and Classical Orbital Elements
Classical Keplerian Orbits
Perturbation of Satellite Orbit
Ionospheric Correction Using Measured Data
Dual-Frequency Ionospheric Correction
Appendix
References
Chapter 5. Satellite Constellation and Geometric Dilution of Precision
Introduction
GPS Orbit Configuration, GPS-24
GPS Orbit-Semi-Major Axis
GPS Orbit-Satellite Phasing
GPS Satellite Visibility and Doppler Shift
Bound on Level of Coverage for 24 Satellites
GPS Satellite Visibility Angle and Droopier Shift
GPS-24 Satellite Visibility
Augmentation of the GPS-24 Constellation
Constellation of 30 GPS Satellites
Coverage Swath for an Equatorial Plane of Satellites
Satellite Ground Traces
Geometric Dilution of Precision Performance Bounds and GPS-24 Performance
Bounds on Geometric Dilution of Precision-Two Dimensions
Bounds on Geometric Dilution of Precision-Three Dimensions
Position Dilution of Precision with an Accurate Clock
Position Dilution of Precision for the GPS-24 Constellation
References
Bibliography
Chapter 6. GPS Satellite and Payload
Spacecraft and Navigation Payload Heritage
Concept
Relation to Earlier Non-GPS Satellites
Overview of Payload Evolution
On-Orbit Performance History
Navigation Payload Requirements
GPS System
GPS Performance
GPS Signal Structure
Payload Requirements
Block IIR Space Vehicle Configuration
Navigation Payload Architecture
Block IIR Payload Design
Payload Subsystems
Mission Data Unit
L-Band Subsystem
Characteristics of the GPS L-Band Satellite Antenna
Coverage Area
Antenna Pattern
Antenna Evolution
Crosslinks
Primary and Secondary Functions
Autonomous Navigation
Future Performance Improvements
Additional Capabilities
References
Chapter 7. Fundamentals of Signal Tracking Theory
Introduction
GPS User Equipment
GPS User Equipment-System Architecture
Alternate Forms of Generalized Position Estimators
Maximum Likelihood Estimates of Delay and Position
Overall Perspective on GPS Receiver Noise Performance
Interaction of Signal Tracking and Navigation Data Demodulation
Delay Lock Loop Receivers for GPS Signal Tracking
Coherent Delay Lock Tracking of Bandlimited Pseudonoise Sequences
Noncoherent Delay Lock Loop Tracking of Pseudonoise Signals
Quasicoherent Delay Lock Loop
Coherent Code/Carrier Delay Lock Loop
Carrier-Aided Pseudorange Tracking
Vector Delay Lock Loop Processing of GPS Signals
Independent Delay Lock Loop and Kalman Filter
Vector Delay Lock Loop (VDLL)
Quasioptimal Noncoherent Vector Delay Lock Loop
Channel Capacity and the Vector Delay Lock Loop
Appendix A: Maximum Likelihood Estimate of Delay and Position
Appendix B: Least-Squares Estimation and Quasioptimal Vector Delay Lock Loops
Appendix C: Noncoherent Delay Lock Loop Noise Performance with Arbitrary Early-Late Reference Spacing
Appendix D: Probability of Losing Lock for the Noncoherent DLL
Appendix E: Colored Measurement Noise in the Vector Delay Lock Loop
References
Chapter 8. GPS Receivers
Generic Receiver Description
Generic Receiver System Level Functions
Design Requirements Summary
Technology Evolution
Historical Evolution of Design Implementation
Current Day Design Implementation
System Design Details
Signal and Noise Representation
Front-End Hardware
Digital Signal Processing
Receiver Software Signal Processing
A Signal-Processing Model and Noise Bandwidth Concepts
Signal Acquisition
Automatic Gain Control
Generic Tracking Loops
Delay Lock Loops
Carrier Tracking
Lock Detectors
Bit Synchronization
Delta Demodulation, Frame Synchronization, and Parity Decoding
Appendix A: Determination of Signal-to-Noise Density
Appendix B: Acquisition Threshold and Performance Determination
References
Chapter 9. GPS Navigation Algorithms
Introduction
Measurement Models
Pseudorange
Doppler
Accumulated Delta Range
Navigation Delta Inputs
Single-Point Solution
Solution Accuracy and Dilution of Precision
Point Solution Example
Users Process Models
Clock Model
Stationary User or Vehicle
Low Dynamics
High Dynamics
Kalman Filter and Alternatives
Discrete Extended Kalman Filter Formulation
Steady-State Filter Performance
Alternate Forms of the Kalman Filter
Dual-Rate Filter
Correlated Measurement Noise
GPS Filtering Examples
Buoy Example
Low Dynamics
Unmodeled Dynamics
Correlated Measurement Errors
Summary
References
Chapter 10. GPS Operational Control Segment
Monitor Stations
Master Control Station
Ground Antenna
Navigation Data Processing
System State Estimation
Navigation Message Generation
Time Coordination
Navigation Product Validation
References ..............:
Part II. GPS Performance and Error Effects
Chapter 11. GPS Error Analysis
Introduction
Fundamental Error Equation
Overview of Development
Derivation of the Fundamental Error Equation
Geometric Dilution of Precision
Derivation of the Geometric Dilution of Precision Equation
Power of the GDOP Concept
Example Calculations
Impact of Elevation Angle on GDOP
Ranging Errors
Six Classes of Errors
Ephemeris Errors
Satellite Clock Errors
Ionosphere Errors
Troposhere Errors
Multipath Errors
Receiver Errors
Standard Error Tables
Error Table Without S/A: Normal Operation for C/A Code
Error Table with S/A
Error Table for Precise Positioning Service (PPS Dual-Frequency P/Y Code)
Summary
References
Chapter 12. Ionospheric Effects on GPS
Introduction
Characteristics of the Ionosphere
Refractive index of the ionosphere
Major Effects on Global Positioning Systems Caused by the Ionosphere
Ionospheric Group Delay-Absolute Range Error
Ionospheric Carrier Phase Advance
Higher-Order Ionospheric Effects
Obtaining Absolute Total Electron Content from Dual-Frequency GPS Measurements
Ionospheric Doppler Shift/Range-Rate Errors
Faraday Rotation
Angular Refraction
Distortion of Pulse Waveforms
Amplitude Scintillation
Ionospheric Phase Scintillation Effects
Total Electron Content
Dependence of Total Electron Content on Solar Flux
Ionospheric Models
Single-Frequency GPS Ionospheric Corrections
Magnetic Storms Effects on Global Positioning Systems
Differential GPS Positioning
Appendix: Ionospheric Correction Algorithm for the Single-Frequency GPS Users
References
Chapter 13. lroposheric Effects on GPS
Troposheric Effects
Introduction
Atmospheric Attenuation
Rainfall Attenuation
Troposheric Scintillation
Tropospheric Delay
Path Length and Delay
Tropospheric Refraction Versus Pressure and Temperature
Empirical Models of the Troposhere
Saastamoinen Total Delay Model
Hopfield Two Quartic Model
Black and Eisner (B&E) Model
Water Vapor Zenith Delay Model-Berman
Davis, Chao, and Marini Mapping Functions
Altshuler and Kalaghan Delay Model
Ray Tracing and Simplified Models
Lanyi Mapping Function and GPS Control Segment Estimate
Model Comparisons
Tropospheric Delay Errors and GPS Positioning
References
Chapter 14. Multipath Effects
Introduction
Signal and Multipath Error Models
Pseudorandom Noise Modulated Signal Description
Coherent Pseudorandom Noise Receiver
Noncoherent Pseudorandom Noise Receiver
Simulation Results
Aggravation and Mitigation
Antenna Considerations
Receiver Design
Multipath Data Collection
Acknowledgments
References
Chapter 15. Foliage Attenuation for Land Mobile Users
Introduction
Attenuation of an Individual Tree or Forest of Trees-Stationary User
Foliage Attenuation-Mobile User
Probability Distribution Models for Foliage Attenuation-Mobile User
Measured Models-Satellite Attenuation Data
Measured Fading for Tree-Lined Roads-Mobile Users
References
Chapter 16. Ephemeris and Clock Navigation Message Accuracy
Control Segment Generation of Predicted Ephemerides and Clock Corrections
Accuracy of the Navigation Message
Global Network GPS Analysis at the Jet Propulsion Laboratory
Accuracy of the Precise Solution
Comparison of Precise Orbits with Broadcast Ephemerides
Comparison of the Precise Clocks with Broadcast Clocks
Summary and Discussion
Appendix: User Equivalent Range Error
References
Chapter 17. Selective Availability
Goals and History
Implementation
Characterization of Selective Availability
Second-Order Gauss-Markov Model
Autoregressive Model
Analytic Model
Recursive Autoregressive Model (Lattice Filter)
Selective Availability Model Summary
References
Chapter 18. Introduction to Relativistic Effects on the Global Positioning System
Introduction
Objectives
Statement of the GPS Problem
Introduction to the Elementary Principles of Relativity
Euclidean Geometry and Newtonian Physics
Space-Time Coordinates and the Lorentz Transformation
Relativistic Effects of Rotation in the Absence of a Gravitational Field
Principle of .Equivalence
Relativistic Effects in GPS
Relativistic Effects on Earth-Based Clocks
Relativistics Effects for Users of the GPS
Secondary Relativistic Effects
References
Chapter 19. Joint Program Office Test Results
Introduction
U.S. Army Yuma Proving Ground (YPG)
Reasons for Selection of Yuma Proving Ground
Lasers
Range Space
Joint Program Office Operating Location
Satellite Constellation for Test Support
Control Segment Responsiveness to Testing Needs
Trajectory Determination YPG
Real-Time Estimate
Best Estimate of Trajectory
Validation of Truth Trajectory Accuracy
Ground Truth
Phase I Test (1972-1979)
Ground Transmitters
Navy Testing for Phase 1
Tests Between Phase I and Phase II (1979-1982)
Weapons Delivery
Differential Tests
Phase II: Full-Scale Engineering Development Tests (1982-1985)
Summary
Bibliography
Chapter 20. Interference Effects and Mitigation Techniques
Introduction
Possible Sources of Interference
Frequency Allocation in Adjacent and Subharmonic Bands
Receiver Design for Tolerance to Interference
Receiver Systems
Quantizer Effects in the Presence of Interference
Effects of Interference on the GPS CIA Receiver
Effects of the CIA-Code Line Components on Narrow-Band Interference Performance
Narrow-Band Interference Effects-Spectra of Correlator Output
Interference Effects-Effects on Receiver-Tracking Loops
Detection of Interference, Adaptive Delay Lock Loop, Adaptive Frequency Notch Filtering, and Adaptive Null Steering Antennas
Adaptation of the Delay Lock Loop and Vector Delay Lock Loop
Rejection of Narrow-Band Interference by Adaptive Frequency Nulling Filters
Adaptive Antennas for Point Source Interference
Augmentation of the GPS Signals and Constellation
Appendix: Mean and Variance of the Correlator Output for an M-Bit Quantizer
References
Author Index
Subject Index
Global Positioning System: Theory and Applications Volume I
Global Positioning System: Theory and Applications Volume I Edited by Bradford W. Parkinson Stanford University, Stanford, California James J. Spilker Jr. Stanford Telecom, Sunnyvale, California Associated Editors: Penina Axelrad University of Colorado, Boulder, Colorado Per Enge Stanford University, Stanford, California Volume 163 PROGRESS IN ASTRONAUTICS AND AERONAUTICS Paul Zarchan, Editor-in-Chief Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts Published by the American Institute of Aeronautics and Astronautics, Inc. 370 L'Enfant Promenade, SW, Washington, DC 20024-2518
Third Printing Copyright © 1996 hy the American Institute of Aeronautics and Astronautics, Inc. Printed in the United States of America. All righL" reserved. Reproduction or translation of any part of this work beyond that per mitted by Se(.1ions 107 and 108 of the U.S. Copyright Law without the permis.'iion of the copyright owner is unlawful. The code following this statement indicates the copyright owner's consent that copies of arti cles in this volume may be made for personal or internal LLc;e, on condition that the copier pay the per-copy fee ($2'()0) plus the per-page fee (S0.50) through the copyright Clearance Center, Inc., 222 Rosewood Drive. Danvers, Ma';sachusctts 01923. This consent does not extend to other kinds of copying, for which permis sion requests should he addressed to the publisher. Users should employ the following code when reporting copying from this volume to the Copyright Clearance Center: 1-56347-106-X/96 $2.00 + .50 Data and information appearing in this book arc for informational purposes only. AIAA is not responsible for any injury or damage resulting from usc or reliance, nor does AIAA warrant that LL..e or reliance will be free from privately owned righL". ISBN 1-56347-106-X
Progress in Astronautics and Aeronautics Editor-in-Chief Paul Zarchan Charles Stark Draper Laboratory. Inc. Editorial Board John J. Bertin U.S. Air Force Academy Leroy S. Fletcher Texas A&M University Richard G. Bradley Lockheed Martin Fort Worth Company Allen E. Fuhs Carmel. Cal({ornia William Brandon MITRE Corporation Ira D. Jacobsen Embry-Riddle Aeronautical University Clarence B. Cohen Redondo Beach. California John L. Junkins Texas A&M University Luigi De Luca Politechnico di Milano. Italy Pradip M. Sagdeo University (~{ Michigan Martin Summerfield Lawrenceville. New Jersey
Dedication To Anna Marie, Elaine, Virginia, and Tim
Table of Contents Preface ............................................................................................................. xxxi Part I. GPS Fundamentals Introduction and Heritage of NAVSTAR, the Global Chapter 1. Positioning System ..................................................................................... 3 Bradford W. Parkinson, Stanford University, Stanford, California Background and History ............................................................................................... Predecessors . ...... ... ..................... ........ ...... ................................................................. Joint Program Office Fonned, 1973 ............... ......... ........................................... ...... 3 4 6 Introductory GPS System Description and Technical Design ..................................... 10 Principals of System Operation . ................. ........... ......... ..................... ...... ............... 10 GPS Ranging Signal....................... .............. ..... ............. ................ ......... ................. 11 Satellite Orbital Configuration .................................................................................. 13 Satellite Design ......................................................................................................... 14 Satellite Autonomy: Atomic Clocks .............................. ........................................... 14 Ionospheric Errors and Corrections ......... ................ ............. .............. ........ ...... ........ 16 Expected Navigation Performance ........................................................................... 16 High Accuracy/Carrier Tracking .............................................................................. 18 History of Satellites .. ....................... ............... ........... ......... ...... .............. ............ .......... 19 Navigation Technology Satellites ....... ............ .................. ........................................ 19 Navigation Development Satellites-Block I .......................................................... 19 Operational Satellites-Block II and IIA .... .................... ..................... ......... ..... ...... 19 Replacement Operational Satellites-Block IIR ...................................................... 20 Launches ........................................................................................................................ 20 Launch Vehicles ..... ....... ................ .............. ......... ............ ......................................... 20 Initial Testing ................................................................ ................................................ 22 Test Results ......................................................... ...................................................... 22 Conclusions ........ .................................................................................... ................... 24 Applications .................................................... .......... ....... ................ .............................. 24 Military ............... ........................ ..... .... .......... ....... .............. .......................... ............. 24 Dual Use: The Civil Problem ................................................................................... 24 Pioneers of the GPS .. ............ .......................... ............ ......... ............................ ............. 26 Defense Development, Research, and Engineering-Malcolm Currie and David Packard . ................................ ................. ............. ............. ..................... ...... 26 Commander of SAMSO, General Ken Schultz ........................................ ............... 26 Contractors ........................................................................................... ..................... 26 Joint Program Office Development Team ..... .................... .................... ...... ...... ....... 27 Predecessors .................... ................... ........... ............... .... ................ ...... .............. ..... 27
Future ............................................................................................................................. 28 References ................................. .................................................................................... 28 Chapter 2. Overview of GPS Operation and Design ............................. 29 J. J. Spilker Jr., Stanford Telecom. Sunnyvale. California and Bradford W. Parkinson, Stanford University. Stanford. California Introduction to GPS ....... ....... ....................... ...... .................... ..... .................................. 29 PeIforrnance Objectives and Quantitative Requirements on the GPS Signal............. 29 Satellite Navigation Concepts, Position Accuracy, and Requirement Signal Time Estimate Accuracy... ..... ....... ........... ..................... ........... ..... ...... .................. 31 GPS Space Segment ... ........... .......................... ...................... ...................... .................. 36 GPS Orbit Configuration and Multiple Access .. ............. ........ ..... ......... .................. 36 GPS Satellite Payload ............................................................................................... 38 Augmentation of GPS ......... ................ ......... .......... ......................... ........... .... ..... ...... 40 GPS Control Segment .... ........... ....... ................. ......... ....... .... ...... ..... ..................... ........ 40 Monitor Stations and Ground Antennas ........................... ................ ...... ........... ....... 41 Operational Control Center ... ........... ....... .......................... ....................... .......... ....... 42 GPS User Segment ........................................................................................................ 43 GPS User Receiver Architecture .............................................................................. 43 Use of GPS ................................................................... ............... ............................. 45 GPS Signal Perturbations-AtmosphericlIonosphericrrropospheric Multipath Effects 49 Ionospheric Effects ..... ....... .................... .............. ..... ..... ........... ........... ............ .......... 49 Tropospheric Effects .. ........... ........... ......... ............. ....... ..................................... ....... 52 Multipath Effects ....................................................................................................... 52 Other Perturbing Effects ....... ...... ............ ........................................................... ....... 54 References ..................................................................................................................... 54 Chapter 3. GPS Signal Structure and Theoretical Performance ......•.. 57 J. J .. Spilker Jr., Stanford Telecom. Sunnyvale. California Introduction ......... ............. ...... .......... ............. ......... .... ....... ............... ...... .............. ......... 57 Summary of Desired GPS Navigation Signal Properties ........................................ 57 Fundamentals of Spread Spectrum Signaling .......................................................... 59 GPS Signal Structure ..................................................... ............................................... 67 Multiplexing Two GPS Spread Spectrum Signals on a Single Carrier and Multiple Access of Multiple Satellite Signals ..................................................... 68 GPS Radio Frequency Selection and Signal Characteristics ...... ...................... ....... 69 Detailed Signal Structure ................ ................................................................... ....... 73 GPS Radio Frequency Receive GPS Power Levels and Signal-to-Noise Ratios ....... 82 GPS Radio Frequency Signal Levels and Power Spectra ............ .............. ...... ....... 82 Satellite Antenna Pattern .............. ...... ........... ........ ............ .......... ............................. 84 Signal Specifications ......................... ................................................................. ....... 87 User-Receiver Signal-lo-Noise Levels ..................................................................... 88 Recommendations for Future Enhancements to the GPS System .......................... 93 Detailed Signal Characteristics and Bounds on Pseudorange Tracking Accuracy..... 94 Cross-Correlation Properties-Worst Case ..... ............... ........... ............. ............. ..... 94 Coarsel Acquisition-Code Properties ......... ......... ................................................ ....... 97 Bounds on GPS Signal Tracking Performance in Presence of White Thermal Noise 106
分享到:
收藏